Finite Conformal Hypergraph Covers and Gaifman Cliques in Finite Structures

Author:

Hodkinson Ian,Otto Martin

Abstract

AbstractWe provide a canonical construction of conformal covers for finite hypergraphs and present two immediate applications to the finite model theory of relational structures. In the setting of relational structures, conformal covers serve to construct guarded bisimilar companion structures that avoid all incidental Gaifman cliques—thus serving as a partial analogue in finite model theory for the usually infinite guarded unravellings. In hypergraph theoretic terms, we show that every finite hypergraph admits a bisimilar cover by a finite conformal hypergraph. In terms of relational structures, we show that every finite relational structure admits a guarded bisimilar cover by a finite structure whose Gaifman cliques are guarded. One of our applications answers an open question about a clique constrained strengthening of the extension property for partial automorphisms (EPPA) of Hrushovski, Herwig and Lascar. A second application provides an alternative proof of the finite model property (FMP) for the clique guarded fragment of first-order logic CGF, by reducing (finite) satisfiability in CGF to (finite) satisfiability in the guarded fragment, GF.

Publisher

Cambridge University Press (CUP)

Subject

Logic,Philosophy

Cited by 33 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The Hrushovski property for compact special cube complexes;Journal of the London Mathematical Society;2024-05

2. Modern Faces of Filtration;Outstanding Contributions to Logic;2023

3. All those EPPA classes (strengthenings of the Herwig–Lascar theorem);Transactions of the American Mathematical Society;2022-07-25

4. The profinite topology of free groups and weakly generic tuples of automorphisms;Mathematical Logic Quarterly;2021-11

5. Comonadic semantics for guarded fragments;2021 36th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS);2021-06-29

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3