All those EPPA classes (strengthenings of the Herwig–Lascar theorem)

Author:

Hubička Jan,Konečný Matěj,Nešetřil Jaroslav

Abstract

Let A \mathbf {A} be a finite structure. We say that a finite structure B \mathbf {B} is an extension property for partial automorphisms (EPPA)-witness for A \mathbf {A} if it contains A \mathbf {A} as a substructure and every isomorphism of substructures of A \mathbf {A} extends to an automorphism of B \mathbf {B} . Class C \mathcal C of finite structures has the EPPA (also called the Hrushovski property) if it contains an EPPA-witness for every structure in C \mathcal C .

We develop a systematic framework for combinatorial constructions of EPPA-witnesses satisfying additional local properties and thus for proving EPPA for a given class C \mathcal C . Our constructions are elementary, self-contained and lead to a common strengthening of the Herwig–Lascar theorem on EPPA for relational classes defined by forbidden homomorphisms, the Hodkinson–Otto theorem on EPPA for relational free amalgamation classes, its strengthening for unary functions by Evans, Hubička and Nešetřil and their coherent variants by Siniora and Solecki. We also prove an EPPA analogue of the main results of J. Hubička and J. Nešetřil: All those Ramsey classes (Ramsey classes with closures and forbidden homomorphisms), thereby establishing a common framework for proving EPPA and the Ramsey property.

There are numerous applications of our results, we include a solution of a problem related to a class constructed by the Hrushovski predimension construction. We also characterize free amalgamation classes of finite Γ L \Gamma \!_L -structures with relations and unary functions which have EPPA.

Funder

Grantová Agentura České Republiky

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,General Mathematics

Reference51 articles.

1. Hajnal Andréka and István Németi, Extending partial isomorphisms, a small construction, Private communication, 2019.

2. Andrés Aranda, David Bradley-Williams, Eng Keat Hng, Jan Hubička, Miltiadis Karamanlis, Michael Kompatscher, Matěj Konečný, and Micheal Pawliuk, Completing graphs to metric spaces, Electronic Notes in Discrete Mathematics 61 (2017), 53–60, The European Conference on Combinatorics, Graph Theory and Applications (EUROCOMB’17).

3. Andrés Aranda, David Bradley-Williams, Eng Keat Hng, Jan Hubička, Miltiadis Karamanlis, Michael Kompatscher, Matěj Konečný, and Michael Pawliuk, Completing graphs to metric spaces, Contributions to Discrete Mathematics 16 (2021), no. 2, 71–89.

4. Andrés Aranda, David Bradley-Williams, Jan Hubička, Miltiadis Karamanlis, Michael Kompatscher, Matěj Konečný, and Micheal Pawliuk, Ramsey expansions of metrically homogeneous graphs, European J. Combin., arXiv:1707.02612, 2017.

5. Decidability of definability;Bodirsky, Manuel,2011

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3