Abstract
Abstract.We show that the Turing degrees are not sufficient to measure the complexity of continuous functions on [0, 1]. Computability of continuous real functions is a standard notion from computable analysis. However, no satisfactory theory of degrees of continuous functions exists. We introduce the continuous degrees and prove that they are a proper extension of the Turing degrees and a proper substructure of the enumeration degrees. Call continuous degrees which are not Turing degrees non-total. Several fundamental results are proved: a continuous function with non-total degree has no least degree representation, settling a question asked by Pour-El and Lempp; every non-computable f ∈ [0,1] computes a non-computable subset of ℕ there is a non-total degree between Turing degrees a <Tb iff b is a PA degree relative to a; ⊆ 2ℕ is a Scott set iff it is the collection of f-computable subsets of ℕ for some f ∈ [0,1] of non-total degree; and there are computably incomparable f, g ∈ [0,1] which compute exactly the same subsets of ℕ. Proofs draw from classical analysis and constructive analysis as well as from computability theory.
Publisher
Cambridge University Press (CUP)
Reference43 articles.
1. On computable numbers, with an application to the Entscheidungsproblem;Turing;Proceedings of the London Mathematical Society. Second Series,1936
2. A generalization of Brouwer’s fixed point theorem
3. Invariant points in function space
4. Computable Analysis
Cited by
49 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献