PA RELATIVE TO AN ENUMERATION ORACLE

Author:

GOH JUN LE,KALIMULLIN ISKANDER SH.,MILLER JOSEPH S.,SOSKOVA MARIYA I.

Abstract

Abstract Recall that B is PA relative to A if B computes a member of every nonempty $\Pi ^0_1(A)$ class. This two-place relation is invariant under Turing equivalence and so can be thought of as a binary relation on Turing degrees. Miller and Soskova [23] introduced the notion of a $\Pi ^0_1$ class relative to an enumeration oracle A, which they called a $\Pi ^0_1{\left \langle {A}\right \rangle }$ class. We study the induced extension of the relation B is PA relative to A to enumeration oracles and hence enumeration degrees. We isolate several classes of enumeration degrees based on their behavior with respect to this relation: the PA bounded degrees, the degrees that have a universal class, the low for PA degrees, and the ${\left \langle {\text {self}\kern1pt}\right \rangle }$ -PA degrees. We study the relationship between these classes and other known classes of enumeration degrees. We also investigate a group of classes of enumeration degrees that were introduced by Kalimullin and Puzarenko [14] based on properties that are commonly studied in descriptive set theory. As part of this investigation, we give characterizations of three of their classes in terms of a special sub-collection of relativized $\Pi ^0_1$ classes—the separating classes. These three can then be seen to be direct analogues of three of our classes. We completely determine the relative position of all classes in question.

Publisher

Cambridge University Press (CUP)

Subject

Logic,Philosophy

Reference29 articles.

1. Characterizing the continuous degrees

2. A VARIANT TO HILBERT'S THEORY OF THE FOUNDATIONS OF ARITHMETIC

3. [24] Miller, J. S. and Soskova, M. I. , Randomness relative to an enumeration oracle, unpublished.

4. [11] Ganchev, H. A. , Kalimullin, I. S. , Miller, J. S. , and Soskova, M. I. , A structural dichotomy in the enumeration degrees, this Journal, vol. 87 (2022), pp. 527–544.

5. Degrees of difficulty of the mass problem;Medvedev;Doklady Akademii Nauk SSSR,1955

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3