Author:
Chisholm John,Fokina Ekaterina B.,Goncharov Sergey S.,Harizanov Valentina S.,Knight Julia F.,Quinn Sara
Abstract
AbstractWe show that for every computable limit ordinal α, there is a computable structure that is categorical, but not relatively categorical (equivalently, it does not have a formally Scott family). We also show that for every computable limit ordinal α, there is a computable structure with an additional relation R that is intrinsically on , but not relatively intrinsically on (equivalently, it is not definable by a computable Σα formula with finitely many parameters). Earlier results in [7], [10], and [8] establish the same facts for computable successor ordinals α.
Publisher
Cambridge University Press (CUP)
Cited by
18 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献