Degrees of bi-embeddable categoricity

Author:

Bazhenov Nikolay12,Fokina Ekaterina3,Rossegger Dino4,San Mauro Luca5

Affiliation:

1. Sobolev Institute of Mathematics, 4 Acad. Koptyug Ave., Novosibirsk, 630090, Russia

2. Novosibirsk State University, 2 Pirogova St., Novosibirsk, 630090, Russia. bazhenov@math.nsc.ru

3. Institute of Discrete Mathematics, Vienna University of Technology, Wiedner Hauptstrasse 8-10/104, 1040 Vienna, Austria. ekaterina.fokina@tuwien.ac.at

4. Department of Pure Mathematics, University of Waterloo, 200 University Ave West, Waterloo, Ontario, Canada. dino.rossegger@uwaterloo.ca

5. Institute of Discrete Mathematics, Vienna University of Technology, Wiedner Hauptstrasse 8-10/104, 1040 Vienna, Austria. luca.san.mauro@tuwien.ac.at

Abstract

We investigate the complexity of embeddings between bi-embeddable structures. In analogy with categoricity spectra, we define the bi-embeddable categoricity spectrum of a structure A as the family of Turing degrees that compute embeddings between any computable bi-embeddable copies of A; the degree of bi-embeddable categoricity of A is the least degree in this spectrum (if it exists). We extend many known results about categoricity spectra to the case of bi-embeddability. In particular, we exhibit structures without degree of bi-embeddable categoricity, and we show that every degree d.c.e above 0 ( α ) for α a computable successor ordinal and 0 ( λ ) for λ a computable limit ordinal is a degree of bi-embeddable categoricity. We also give examples of families of degrees that are not bi-embeddable categoricity spectra.

Publisher

IOS Press

Subject

Artificial Intelligence,Computational Theory and Mathematics,Computer Science Applications,Theoretical Computer Science

Reference29 articles.

1. Degrees that are not degrees of categoricity;Anderson;Notre Dame Journal of Formal Logic,2016

2. The hyperarithmetical hierarchy

3. Generic copies of countable structures;Ash;Annals of Pure and Applied Logic,1989

4. Recursive labelling systems and stability of recursive structures in hyperarithmetical degrees;Ash;Transactions of the American Mathematical Society,1986

5. Pairs of recursive structures;Ash;Annals of Pure and Applied Logic,1990

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The Complexity of Finding Supergraphs;Lecture Notes in Computer Science;2023

2. Computable Reducibility for Computable Linear Orders of Type ω;Journal of Mathematical Sciences;2022-11

3. On bi-embeddable categoricity of algebraic structures;Annals of Pure and Applied Logic;2022-03

4. Calculating the Mind Change Complexity of Learning Algebraic Structures;Revolutions and Revelations in Computability;2022

5. Computable embeddability for algebraic structures;Asian-European Journal of Mathematics;2021-10-18

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3