Inducing lateralized phosphenes over the occipital lobe using transcranial magnetic stimulation to navigate a virtual environment

Author:

Gebrehiwot Adonay N.ORCID,Kato Tatsuya,Nakazawa Kimitaka

Abstract

Electrical stimulation involving visual areas of the brain produces artificial light percepts called phosphenes. These visual percepts have been extensively investigated in previous studies involving intracortical microsimulation (ICMS) and serve as the basis for developing a visual prosthesis for the blind. Although advances have been achieved, many challenges still remain with implementing a functional ICMS for visual rehabilitation purposes. Transcranial magnetic stimulation (TMS) over the primary occipital lobe offers an alternative method to produce phosphenes non-invasively. A main challenge facing blind individuals involves navigation. Within the scientific community, methods to evaluate the ability of a visual prosthesis to facilitate in navigation has been neglected. In this study, we investigate the effectiveness of evoking lateralized phosphenes to navigate a computer simulated virtual environment. More importantly, we demonstrate how virtual environments along with the development of a visual prosthesis share a mutual relationship benefiting both patients and researchers. Using two TMS devices, a pair of 40mm figure-of-eight coils were placed over each occipital hemisphere resulting in lateralized phosphene perception. Participants were tasked with making a series of left and right turns using peripheral devices depending on the visual hemifield in which a phosphene is present. If a participant was able to accurately perceive all ten phosphenes, the simulated target is able to advance and fully exit the virtual environment. Our findings demonstrate that participants can interpret lateralized phosphenes while highlighting the integration of computer based virtual environments to evaluate the capability of a visual prosthesis during navigation.

Funder

Japan Society for the Promotion of Science Kakenhi

Uehara Memorial Foundation

Core Research for Evolutional Science and Technology Program by the Japan Science and Technology Agency

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3