Five-day rehabilitation of patients undergoing total knee arthroplasty using an end-effector gait robot as a neuromodulation blending tool for deafferentation, weight offloading and stereotyped movement: Interim analysis

Author:

Koo Kyo-in,Hwang Chang HoORCID

Abstract

Deafferentation and weight offloading can increase brain and spinal motor neuron excitability, respectively. End-effector gait robots (EEGRs) can blend these effects with stereotyped movement-induced neuroplasticity. The authors aimed to evaluate the usefulness of EEGRs as a postoperative neuro-muscular rehabilitation tool. This prospective randomized controlled trial included patients who had undergone unilateral total knee arthroplasty (TKA). Patients were randomly allocated into two groups: one using a 200-step rehabilitation program in an EEGR or the other using a walker on a floor (WF) three times a day for five weekdays. The two groups were compared by electrophysiological and biomechanical methods. Since there were no more enrollments due to funding issues, interim analysis was performed. Twelve patients were assigned to the EEGR group and eight patients were assigned to the WF group. Although the muscle volume of the quadriceps and hamstring did not differ between the two groups, the normalized peak torque of the operated knee flexors (11.28 ± 16.04 Nm/kg) was improved in the EEGR group compared to that of the operated knee flexors in the WF group (4.25 ± 14.26 Nm/kg) (p = 0.04). The normalized compound motor action potentials of the vastus medialis (VM) and biceps femoris (BF) were improved in the EEGR group (p < 0.05). However, the normalized real-time peak amplitude and total, mean area under the curve of VM were decreased during rehabilitation in the EEGR group (p < 0.05). No significant differences were found between operated and non-operated knees in the EEGR group. Five-day EEGR-assisted rehabilitation induced strengthening in the knee flexors and the muscular reactivation of the BF and VM after TKA, while reducing the real-time use of the VM. This observation may suggest the feasibility of this technique: EEGR modulated the neuronal system of the patients rather than training their muscles. However, because the study was underpowered, all of the findings should be interpreted with the utmost caution.

Funder

Chungnam National University

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3