Affiliation:
1. Department and Research Institute of Rehabilitation Medicine, Severance Rehabilitation Hospital, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
Abstract
Cerebral palsy is a neurologic disorder caused by lesions on an immature brain, often resulting in spasticity and gait abnormality. This study aimed to compare the muscle activation patterns of real level and stair walking with those of simulated walking using an end-effector-type robot in children with spastic cerebral palsy. The electromyographic activities of the vastus lateralis, biceps femoris, tibialis anterior and medial gastrocnemius of nine children with spastic bilateral cerebral palsy were measured during gait using a wireless surface EMG device. Morning walk was used for the simulated gait. Differences in the muscle activation patterns between the real and simulated gait conditions were analyzed. In the loading response, all four muscles showed reduced activity during two simulated conditions. In mid-stance, mGCM showed reduced activity during simulated conditions, whereas BFem showed greater activity during simulated level walking. In the swing phase, BFem and TAnt activity was reduced during the simulated conditions. The onset–offset of the VLat, BFem and TAnt activity was significantly delayed during simulated versus real level walking. No differences in activity onset–offset were observed between the simulated level and stair conditions. In conclusion, the robot-simulated gait showed differences in its muscle activation patterns compared with the real gait conditions, which must be considered for gait training using an end-effector-type robot.
Funder
National Research Foundation of Korea (NRF) grant funded by the Korean government
Research Institute of Rehabilitation Medicine, Yonsei University College of Medicine
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry