Vulnerability of deep neural networks for detecting COVID-19 cases from chest X-ray images to universal adversarial attacks

Author:

Hirano Hokuto,Koga Kazuki,Takemoto KazuhiroORCID

Abstract

Owing the epidemic of the novel coronavirus disease 2019 (COVID-19), chest X-ray computed tomography imaging is being used for effectively screening COVID-19 patients. The development of computer-aided systems based on deep neural networks (DNNs) has become an advanced open source to rapidly and accurately detect COVID-19 cases because the need for expert radiologists, who are limited in number, forms a bottleneck for screening. However, thus far, the vulnerability of DNN-based systems has been poorly evaluated, although realistic and high-risk attacks using universal adversarial perturbation (UAP), a single (input image agnostic) perturbation that can induce DNN failure in most classification tasks, are available. Thus, we focus on representative DNN models for detecting COVID-19 cases from chest X-ray images and evaluate their vulnerability to UAPs. We consider non-targeted UAPs, which cause a task failure, resulting in an input being assigned an incorrect label, and targeted UAPs, which cause the DNN to classify an input into a specific class. The results demonstrate that the models are vulnerable to non-targeted and targeted UAPs, even in the case of small UAPs. In particular, the 2% norm of the UAPs to the average norm of an image in the image dataset achieves >85% and >90% success rates for the non-targeted and targeted attacks, respectively. Owing to the non-targeted UAPs, the DNN models judge most chest X-ray images as COVID-19 cases. The targeted UAPs allow the DNN models to classify most chest X-ray images into a specified target class. The results indicate that careful consideration is required in practical applications of DNNs to COVID-19 diagnosis; in particular, they emphasize the need for strategies to address security concerns. As an example, we show that iterative fine-tuning of DNN models using UAPs improves the robustness of DNN models against UAPs.

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference42 articles.

1. An interactive web-based dashboard to track COVID-19 in real time;E Dong;Lancet Infect Dis,2020

2. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China;C Huang;Lancet,2020

3. Why inequality could spread COVID-19;F Ahmed;Lancet Public Heal,2020

4. Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus–infected pneumonia in Wuhan, China;D Wang;JAMA,2020

5. Sensitivity of chest CT for COVID-19: comparison to RT-PCR;Y Fang;Radiology,2020

Cited by 37 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3