Affiliation:
1. Division of Electronics & Electrical Engineering, Dongguk University, Seoul 04620, Republic of Korea
Abstract
With the emergence of COVID-19 disease in 2019, machine learning (ML) techniques, specifically deep learning networks (DNNs), played a key role in diagnosing the disease in the medical industry due to their superior performance. However, the computational cost of deep learning networks (DNNs) can be quite high, making it necessary to often outsource the training process to third-party providers, such as machine learning as a service (MLaaS). Therefore, careful consideration is required to achieve robustness in DNN-based systems against cyber-security attacks. In this paper, we propose a method called the dropout-bagging (DB-COVIDNet) algorithm, which works as a robust defense mechanism against poisoning backdoor attacks. In this model, the trigger-related features will be removed by the modified dropout algorithm, and then we will use the new voting method in the bagging algorithm to achieve the final results. We considered AC-COVIDNet as the main inducer of the bagging algorithm, which is an attention-guided contrastive convolutional neural network (CNN), and evaluated the performance of the proposed method with the malicious COVIDx dataset. The results demonstrated that DB-COVIDNet has strong robustness and can significantly reduce the effect of the backdoor attack. The proposed DB-COVIDNet nullifies backdoors before the attack has been activated, resulting in a tremendous reduction in the attack success rate from 99.5% to 3% with high accuracy on the clean data.
Funder
Korea Institute of Energy Technology Evaluation and Planning
Ministry of Trade, Industry Energy (MOTIE) of the Republic of Korea
Subject
General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. A Time-Stamp Attack on Digital Twin-Based Lithium-ion Battery Monitoring for Electric Vehicles;2024 International Conference on Artificial Intelligence in Information and Communication (ICAIIC);2024-02-19
2. Defense Method Challenges Against Backdoor Attacks in Neural Networks;2024 International Conference on Artificial Intelligence in Information and Communication (ICAIIC);2024-02-19