UAV-based evaluation of morphological changes induced by extreme rainfall events in meandering rivers

Author:

Akay Semih SamiORCID,Özcan OrkanORCID,Şanlı Füsun BalıkORCID,Görüm Tolga,Şen Ömer LütfiORCID,Bayram Bülent

Abstract

Morphological changes, caused by the erosion and deposition processes due to water discharge and sediment flux occur, in the banks along the river channels and in the estuaries. Flow rate is one of the most important factors that can change river morphology. The geometric shapes of the meanders and the river flow parameters are crucial components in the areas where erosion or deposition occurs in the meandering rivers. Extreme precipitation triggers erosion on the slopes, which causes significant morphological changes in large areas during and after the event. The flow and sediment amount observed in a river basin with extreme precipitation increases and exceeds the long-term average value. Hereby, erosion severity can be determined by performing spatial analyses on remotely sensed imagery acquired before and after an extreme precipitation event. Changes of erosion and deposition along the river channels and overspill channels can be examined by comparing multi-temporal Unmanned Aerial Vehicle (UAV) based Digital Surface Model (DSM) data. In this study, morphological changes in the Büyük Menderes River located in the western Turkey, were monitored with pre-flood (June 2018), during flood (January 2019), and post-flood (September 2019) UAV surveys, and the spatial and volumetric changes of eroded/deposited sediment were quantified. For this purpose, the DSAS (Digital Shoreline Analysis System) method and the DEM of Difference (DoD) method were used to determine the changes on the riverbank and to compare the periodic volumetric morphological changes. Hereby, Structure from Motion (SfM) photogrammetry technique was exploited to a low-cost UAV derived imagery to achieve riverbank, areal and volumetric changes following the extreme rainfall events extracted from the time series of Tropical Rainfall Measuring Mission (TRMM) satellite data. The change analyses were performed to figure out the periodic morphodynamic variations and the impact of the flood on the selected meandering structures. In conclusion, although the river water level increased by 0.4–5.9 meters with the flood occurred in January 2019, the sediment deposition areas reformed after the flood event, as the water level decreased. Two-year monitoring revealed that the sinuosity index (SI) values changed during the flood approached the pre-flood values over time. Moreover, it was observed that the amount of the deposited sediments in September 2019 approached that of June 2018.

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3