Abstract
Purpose
The purpose of this study is to evaluate the influence of different field strengths on perfusion and ventilation parameters, SNR and CNR derived by PREFUL MRI using predefined sequence parameters.
Methods
Data sets of free breathing 2d FLASH lung MRI were acquired from 15 healthy subjects at 1.5T and 3T (Magnetom Avanto and Skyra, Siemens Healthcare, Erlangen, Germany) with a maximum period of 3 days in between. The processed functional parameters regional ventilation (RVent), perfusion (Q), quantified perfusion (QQuant), perfusion defect percentage (QDP), ventilation defect percentage (VDP) and ventilation-perfusion match (VQM) were compared for systematic differences. Signal- and contrast-to-noise ratio (SNR and CNR) of both acquisitions were analyzed.
Results
RVent, Q, VDP, SNR and CNR presented no significant differences between 1.5T and 3T. QQuant (1.5T vs. 3T, P = 0.04), and QDP (1.5T vs. 3T, P≤0.01) decreased significantly at 3T. Consequently, VQM increased significantly (1.5T vs. 3T, P≤0.01). Skewness and kurtosis of the Q-values increased significantly at 3T (P≤0.01). The mean Sørensen-Dice coefficients between both series were 0.91 for QDP and 0.94 for VDP. The Bland-Altman analysis of both series showed mean differences of 4.29% for QDP, 1.23% for VDP and -5.15% for VQM. Using the above-mentioned parameters for three-day repeatability at two different scanners and field strengths, the retrospective power calculation showed, that a sample size of 15 can detect differences of 3.7% for QDP, of 2.9% for VDP and differences of 2.6% for VQM.
Conclusion
Significant differences in QDP may be related to field inhomogeneities, which is expressed by increasing skewness and kurtosis at 3T. QQuant reveals only poor reproducibility between 1.5T and 3T. RVent, Q, VDP, SNR and CNR were not altered significantly at the used sequence parameters. Healthy participants with minimal defects present high spatial agreement of QDP and VDP.
Publisher
Public Library of Science (PLoS)
Reference47 articles.
1. Forum of International Respiratory Societies. The Global Impact of Respiratory Disease—Second Edition. Sheffield; 2017.
2. World Health Organization. World health statistics 2008. Geneva; 2008.
3. Nuclear magnetic resonance imaging with hyperpolarised helium-3;M Ebert;Lancet,1996
4. Hyperpolarized helium-3 gas magnetic resonance imaging of the lung. Top;H-U Kauczor;Magn. Reson. Imaging,2003
5. 19 F MRI of the Lungs Using Inert Fluorinated Gases: Challenges and New Developments;MJ Couch;J. Magn. Reson. Imaging,2019
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献