Spectroscopic and microscopic examination of teeth exposed to green tea at different temperatures

Author:

Manno Sinai H. C.ORCID,Manno Francis A. M.,Tian Li,Khan Muhammad S.,Ahmed IrfanORCID,Liu Yuanchao,Li Vincent W. T.,Xu Shisan,Xie Fangjing,Hung Tak Fu,Ma Victor,Cho William,Aldape Beatriz,Cheng Shuk Han,Lau Condon

Abstract

Tea is a popular beverage consumed at different temperatures. The effect of tea on teeth at different temperatures has not been studied previously. The present study used an in vitro green tea immersed tooth model at different tea temperatures (hot and cold) compared to an in vivo tea administration model allowing rats to drink tea over the course of a week. The elements present in tea leaves were identified by Inductively Coupled Plasma Mass Spectrometry (ICP-MS) and compared to the elements in teeth (enamel surface) using Laser-Induced Breakdown Spectroscopy (LIBS). Here, LIBS demonstrated in vivo and in vitro green tea treatments resulted in a significant increase in the mineral elements found in enamel. For the in vitro assessment, elements in enamel varied based on cold-tea and hot-tea treatment; however, hot water reduced the elements in enamel. Atomic force microscopy found the in vivo tea group had a higher roughness average (RA) compared with the in vivo water group. Cold tea and hot tea in vitro groups demonstrated lower RA than in vitro water controls. Scanning electron microscopy found hot water induced cracks more than 1.3μm in enamel while cold tea and hot tea promoted the adhering of extrinsic matter to teeth. Overall, teeth treated to high temperature lost the mineral phase leading to demineralization. Our results indicate that green tea protects enamel, but its protective action in dental structures is enhanced at cold temperature.

Funder

City University of Hong Kong

CONACYT

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference77 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Qualitative Classification of Biological Materials;Laser-Induced Breakdown Spectroscopy in Biological, Forensic and Materials Sciences;2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3