Revisiting soil bacterial counting methods: Optimal soil storage and pretreatment methods and comparison of culture-dependent and -independent methods

Author:

Lee Jeonggil,Kim Han-SukORCID,Jo Ho Young,Kwon Man JaeORCID

Abstract

Although a number of different methods have been used to quantify soil bacteria, identifying the optimal method(s) for soil bacterial abundance is still in question. No single method exists for undertaking an absolute microbial count using culture-dependent methods (CDMs) or even culture-independent methods (CIMs). This study investigated soil storage and pretreatment methods for optimal bacterial counts. Appropriate storage temperature (4°C) and optimal pretreatment methods (sonication time for 3 min and centrifugation at 1400 g) were necessary to preserve bacterial cell viability and eliminate interference from soil particles. To better estimate soil bacterial numbers under various cellular state and respiration, this study also evaluated three CDMs (i.e., colony forming unit, spotting, and most probable number (MPN) and three CIMs (i.e., flow cytometry (FCM), epifluorescence microscopy (EM) count, and DNA quantitation). Each counting method was tested using 72 soil samples collected from a local arable farm site at three different depths (i.e., 10–20, 90–100, and 180–190 cm). Among all CDMs, MPN was found to be rapid, simple, and reliable. However, the number of bacteria quantified by MPN was 1–2 orders lower than that quantified by CIMs, likely due to the inability of MPN to count anaerobic bacteria. The DNA quantitation method appeared to overestimate soil bacterial numbers, which may be attributed to DNA from dead bacteria and free DNA in the soil matrix. FCM was found to be ineffective in counting soil bacteria as it was difficult to separate the bacterial cells from the soil particles. Dyes used in FCM stained the bacterial DNA and clay particles. The EM count was deemed a highly effective method as it provided information on soil mineral particles, live bacteria, and dead bacteria; however, it was a time-consuming and labor-intensive process. Combining both types of methods was considered the best approach to acquire better information on the characteristics of indigenous soil microorganisms (aerobic versus anaerobic, live versus dead).

Funder

Korea Environment Industry & Technology Institute through Subsurface Environment Management Project, funded by Korea Ministry of Environment

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference48 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3