Abstract
In the twenty-first century, ticks and tick-borne diseases have expanded their ranges and impact across the US. With this spread, it has become vital to monitor vector and disease distributions, as these shifts have public health implications. Typically, tick-borne disease surveillance (e.g., Lyme disease) is passive and relies on case reports, while disease risk is calculated using active surveillance, where researchers collect ticks from the environment. Case reports provide the basis for estimating the number of cases; however, they provide minimal information on vector population or pathogen dynamics. Active surveillance monitors ticks and sylvatic pathogens at local scales, but it is resource-intensive. As a result, data are often sparse and aggregated across time and space to increase statistical power to model or identify range changes. Engaging public participation in surveillance efforts allows spatially and temporally diverse samples to be collected with minimal effort. These citizen-driven tick collections have the potential to provide a powerful tool for tracking vector and pathogen changes. We used MaxEnt species distribution models to predict the current and future distribution of Ixodes pacificus across the Western US through the use of a nationwide citizen science tick collection program. Here, we present niche models produced through citizen science tick collections over two years. Despite obvious limitations with citizen science collections, the models are consistent with previously-predicted species ranges in California that utilized more than thirty years of traditional surveillance data. Additionally, citizen science allows for an expanded understanding of I. pacificus distribution in Oregon and Washington. With the potential for rapid environmental changes instigated by a burgeoning human population and rapid climate change, the development of tools, concepts, and methodologies that provide rapid, current, and accurate assessment of important ecological qualities will be invaluable for monitoring and predicting disease across time and space.
Publisher
Public Library of Science (PLoS)
Reference69 articles.
1. Paddock CD, Lane RS, Staples JE, Labruna MB. Global health impacts of vector-borne diseases [Internet]. Mack A, editor. Global Health Impacts of Vector-Borne Diseases: Workshop Summary. Washington, D.C.: National Academies Press; 2016. 221–257 p. Available from: https://www.ncbi.nlm.nih.gov/books/NBK390439/
2. Climate change and Ixodes tick-borne diseases of humans;RS Ostfeld;Philos Trans R Soc Lond B Biol Sci,2015
3. Range Expansion of tick disease vectors in North America: implications for spread of tick-borne disease.;D Sonenshine;Int J Environ Res Public Health,2018
4. Centers for Disease Control and Prevention. National Notifiable Diseases Surveillance System (NNDSS) [Internet]. 2019. Available from: https://wwwn.cdc.gov/nndss/
5. Epidemiology of Lyme disease.;PS Mead;Infect Dis Clin North Am,2015
Cited by
27 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献