Affiliation:
1. Cary Institute of Ecosystem Studies, PO Box AB, Millbrook, NY 12545, USA
2. School of Biological Sciences, Washington State University, Pullman, WA 99164, USA
Abstract
The evidence that climate warming is changing the distribution of
Ixodes
ticks and the pathogens they transmit is reviewed and evaluated. The primary approaches are either phenomenological, which typically assume that climate alone limits current and future distributions, or mechanistic, asking which tick-demographic parameters are affected by specific abiotic conditions. Both approaches have promise but are severely limited when applied separately. For instance, phenomenological approaches (e.g. climate envelope models) often select abiotic variables arbitrarily and produce results that can be hard to interpret biologically. On the other hand, although laboratory studies demonstrate strict temperature and humidity thresholds for tick survival, these limits rarely apply to field situations. Similarly, no studies address the influence of abiotic conditions on more than a few life stages, transitions or demographic processes, preventing comprehensive assessments. Nevertheless, despite their divergent approaches, both mechanistic and phenomenological models suggest dramatic range expansions of
Ixodes
ticks and tick-borne disease as the climate warms. The predicted distributions, however, vary strongly with the models' assumptions, which are rarely tested against reasonable alternatives. These inconsistencies, limited data about key tick-demographic and climatic processes and only limited incorporation of non-climatic processes have weakened the application of this rich area of research to public health policy or actions. We urge further investigation of the influence of climate on vertebrate hosts and tick-borne pathogen dynamics. In addition, testing model assumptions and mechanisms in a range of natural contexts and comparing their relative importance as competing models in a rigorous statistical framework will significantly advance our understanding of how climate change will alter the distribution, dynamics and risk of tick-borne disease.
Subject
General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology
Reference124 articles.
1. Solomon S Qin D Manning M Chen Z Marquis M Averyt KB Tignor M& Miller HL (eds). 2007 Climate change 2007: the physical science basis . Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. New York NY: Cambridge University Press.
2. Climate variability, global change, immunity, and the dynamics of infectious diseases
3. Do rising temperatures matter
4. The Global Spread of Malaria in a Future, Warmer World
5. Climate and Vectorborne Diseases
Cited by
226 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献