Force-velocity profiling in athletes: Reliability and agreement across methods

Author:

Lindberg KolbjørnORCID,Solberg Paul,Bjørnsen ThomasORCID,Helland Christian,Rønnestad Bent,Thorsen Frank Martin,Haugen Thomas,Østerås Sindre,Kristoffersen Morten,Midttun Magnus,Sæland Fredrik,Paulsen Gøran

Abstract

The aim of the study was to examine the test-retest reliability and agreement across methods for assessing individual force-velocity (FV) profiles of the lower limbs in athletes. Using a multicenter approach, 27 male athletes completed all measurements for the main analysis, with up to 82 male and female athletes on some measurements. The athletes were tested twice before and twice after a 2- to 6-month period of regular training and sport participation. The double testing sessions were separated by ~1 week. Individual FV-profiles were acquired from incremental loading protocols in squat jump (SJ), countermovement jump (CMJ) and leg press. A force plate, linear encoder and a flight time calculation method were used for measuring force and velocity during SJ and CMJ. A linear regression was fitted to the average force and velocity values for each individual test to extrapolate the FV-variables: theoretical maximal force (F0), velocity (V0), power (Pmax), and the slope of the FV-profile (SFV). Despite strong linearity (R2>0.95) for individual FV-profiles, the SFV was unreliable for all measurement methods assessed during vertical jumping (coefficient of variation (CV): 14–30%, interclass correlation coefficient (ICC): 0.36–0.79). Only the leg press exercise, of the four FV-variables, showed acceptable reliability (CV:3.7–8.3%, ICC:0.82–0.98). The agreement across methods for F0 and Pmax ranged from (Pearson r): 0.56–0.95, standard error of estimate (SEE%): 5.8–18.8, and for V0 and SFV r: -0.39–0.78, SEE%: 12.2–37.2. With a typical error of 1.5 cm (5–10% CV) in jump height, SFV and V0 cannot be accurately obtained, regardless of the measurement method, using a loading range corresponding to 40–70% of F0. Efforts should be made to either reduce the variation in jumping performance or to assess loads closer to the FV-intercepts. Coaches and researchers should be aware of the poor reliability of the FV-variables obtained from vertical jumping, and of the differences across measurement methods.

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference58 articles.

1. Training-related changes in force–power profiles: implications for the skeleton start;SL Colyer;Int J Sports Physiol Perform,2018

2. Selective effects of training against weight and inertia on muscle mechanical properties;S Djuric;Int J Sports Physiol Perform,2016

3. Effectiveness of an individualized training based on force-velocity profiling during jumping;P Jiménez-Reyes;Front Physiol,2017

4. Optimal force–velocity profile in ballistic movements—altius: citius or fortius?;P Samozino;Med Sci Sports Exerc,2012

5. Force-velocity profile: imbalance determination and effect on lower limb ballistic performance;P Samozino;Int J Sports Med,2014

Cited by 32 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3