Abstract
Calcium salts of long-chain fatty acids (CSFA) from linseed oil have the potential to reduce methane (CH4) production from ruminants; however, there is little information on the effect of supplementary CSFA on rumen microbiome as well as CH4 production. The aim of the present study was to evaluate the effects of supplementary CSFA on ruminal fermentation, digestibility, CH4 production, and rumen microbiome in vitro. We compared five treatments: three CSFA concentrations—0% (CON), 2.25% (FAL) and 4.50% (FAH) on a dry matter (DM) basis—15 mM of fumarate (FUM), and 20 mg/kg DM of monensin (MON). The results showed that the proportions of propionate in FAL, FAH, FUM, and MON were increased, compared with CON (P < 0.05). Although DM and neutral detergent fiber expressed exclusive of residual ash (NDFom) digestibility decreased in FAL and FAH compared to those in CON (P < 0.05), DM digestibility-adjusted CH4 production in FAL and FAH was reduced by 38.2% and 63.0%, respectively, compared with that in CON (P < 0.05). The genera Ruminobacter, Succinivibrio, Succiniclasticum, Streptococcus, Selenomonas.1, and Megasphaera, which are related to propionate production, were increased (P < 0.05), while Methanobrevibacter and protozoa counts, which are associated with CH4 production, were decreased in FAH, compared with CON (P < 0.05). The results suggested that the inclusion of CSFA significantly changed the rumen microbiome, leading to the acceleration of propionate production and the reduction of CH4 production. In conclusion, although further in vivo study is needed to evaluate the reduction effect on rumen CH4 production, CSFA may be a promising candidate for reduction of CH4 emission from ruminants.
Funder
Japan Society for the Promotion of Science
Kyoto University
Publisher
Public Library of Science (PLoS)
Reference92 articles.
1. The global methane budget 2000–2012;M Saunois;Earth Syst Sci Data,2016
2. Tackling climate change through livestock: a global assessment of emissions and mitigation opportunities;PJ Gerber;Food and Agriculture Organization of the United Nations (FAO),2013
3. Methane emissions from cattle;KA Johnson;J Anim Sci,1995
4. Nutritional management for enteric methane abatement: a review;KA Beauchemin;Aust J Exp Agric,2008