Tree rows in temperate agroforestry croplands alter the composition of soil bacterial communities

Author:

Beule LukasORCID,Karlovsky PetrORCID

Abstract

Background Tree-based intercropping (agroforestry) has been advocated to reduce adverse environmental impacts of conventional arable cropping. Modern agroforestry systems in the temperate zone are alley-cropping systems that combine rows of fast-growing trees with rows of arable crops. Soil microbial communities in these systems have been investigated intensively; however, molecular studies with high taxonomical resolution are scarce. Methods Here, we assessed the effect of temperate agroforestry on the abundance, diversity and composition of soil bacterial communities at three paired poplar-based alley cropping and conventional monoculture cropland systems using real-time PCR and Illumina sequencing of bacterial 16S rRNA genes. Two of the three systems grew summer barley (Hordeum vulgare); one system grew maize (Zea mays) in the sampling year. To capture the spatial heterogeneity induced by the tree rows, soil samples in the agroforestry systems were collected along transects spanning from the centre of the tree rows to the centre of the agroforestry crop rows. Results Tree rows of temperate agroforestry systems increased the abundance of soil bacteria while their alpha diversity remained largely unaffected. The composition of the bacterial communities in tree rows differed from those in arable land (crop rows of the agroforestry systems and conventional monoculture croplands). Several bacterial groups in soil showed strong association with either tree rows or arable land, revealing that the introduction of trees into arable land through agroforestry is accompanied by the introduction of a tree row-associated microbiome. Conclusion The presence of tree row-associated bacteria in agroforestry increases the overall microbial diversity of the system. We speculate that the increase in biodiversity is accompanied by functional diversification. Differences in plant-derived nutrients (root exudates and tree litter) and management practices (fertilization and tillage) likely account for the differences between bacterial communities of tree rows and arable land in agroforestry systems.

Funder

Bundesministerium für Bildung und Forschung

Open Access Publication Funds of the Göttingen University

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3