Optimal vehicle size and driving condition for extended-range electric vehicles in China: A life cycle perspective

Author:

Liu YongtaoORCID,Qiao Jie,Xu Haibo,Liu Jiahui,Chen Yisong

Abstract

Many researchers use life cycle assessment methodology to investigate the energy and environmental impacts of energy-saving and new energy vehicles. However, in the context of China, the life cycle energy-saving and emission-reduction effects of extended-range electric vehicles (EREVs), and the optimal applicable vehicle size and driving conditions for EREVs have been rarely studied. In this study, based on the life cycle assessment theory, the resource consumption, energy exhaustion, and environmental impact of EREVs were comprehensively analyzed. In addition, a differential evaluation model of ecological benefits was established for comparing EREVs with other vehicles with different power sources. Finally, scenario analysis was performed in terms of different vehicle sizes and driving conditions. The results have shown that EREV has great advantages in reducing mineral resource consumption and fossil energy consumption. The consumption of mineral resources of EREV is 14.68% lower than that of HEV, and the consumption of fossil energy is 34.72% lower than that of ICEV. In terms of environmental impact, EREV lies in the middle position. The scenario analysis has revealed that, for EREV in China, the optimal vehicle size is the passenger car and the optimal driving condition is the suburban condition. This work helps to understand the environmental performance of EREVs in China and may provide a decision-making reference for the government.

Funder

National Nature Science Foundation of China

Key Research and Development Program of Shaanxi

Youth Fund for Humanities and Social Sciences of the Ministry of Education of China

Fundamental Research Funds for the Central Universities in China

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3