A Comprehensive Review for Battery Electric Vehicles (BEV) Drive Circuits Technology, Operations, and Challenges

Author:

Ntombela Mlungisi1ORCID,Musasa Kabeya1ORCID,Moloi Katleho1

Affiliation:

1. Department of Electrical Power Engineering, Faculty of Engineering and the Built Environment, Durban University of Technology, Durban 4000, South Africa

Abstract

Electric vehicles (EVs) are gaining more and more traction as a viable option in the automotive sector. This mode of transportation is currently on track, according to current trends, to totally replace internal combustion engine (ICE) cars in the not-too-distant future. The economic system, the energy infrastructure, and the environment are just a few of the areas where electric vehicles could have a major impact. The transportation industry produces the second-most carbon dioxide gas from the combustion of fossil fuels, making it the second-highest contributor to global warming. A lot of people are looking to EVs, or electric vehicles, as a possible game-changing answer to this problem. Since an electric motor drives the electric vehicle’s propeller instead of an internal combustion engine, electric vehicles can reduce their carbon dioxide (CO2) emissions compared to traditional automobiles. If coupled with renewable energy sources, EVs might theoretically become emission-free automobiles. In this paper, we will examine the various EV drive circuit types, including their construction and the benefits and drawbacks of employing each. This article discusses the current state of battery technology with an emphasis on EV batteries. This article discusses the best electric motor for EVs in terms of efficiency, power density, fault tolerance, dependability, cost, and more. Next, we conduct in-depth research into the difficulties and potential rewards of EV adoption in the future. While improvements in areas like charging times and battery performance are encouraging, government regulation of EVs remains a big non-technical barrier.

Funder

Durban University of Technology

Publisher

MDPI AG

Subject

Automotive Engineering

Reference166 articles.

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3