Data structure set-trie for storing and querying sets: Theoretical and empirical analysis

Author:

Savnik Iztok,Akulich Mikita,Krnc MatjažORCID,Škrekovski Riste

Abstract

Set containment operations form an important tool in various fields such as information retrieval, AI systems, object-relational databases, and Internet applications. In the paper, a set-trie data structure for storing sets is considered, along with the efficient algorithms for the corresponding set containment operations. We present the mathematical and empirical study of the set-trie. In the mathematical study, the relevant upper-bounds on the efficiency of its expected performance are established by utilizing a natural probabilistic model. In the empirical study, we give insight into how different distributions of input data impact the efficiency of set-trie. Using the correct parameters for those randomly generated datasets, we expose the key sources of the input sensitivity of set-trie. Finally, the empirical comparison of set-trie with the inverted index is based on the real-world datasets containing sets of low cardinality. The comparison shows that the running time of set-trie consistently outperforms the inverted index by orders of magnitude.

Funder

Javna Agencija za Raziskovalno Dejavnost RS

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Trie and LOUDS hybrid model for efficient e-commerce processing in cloud environment;Simulation Modelling Practice and Theory;2024-07

2. Connected Components for Scaling Partial-order Blocking to Billion Entities;Journal of Data and Information Quality;2024-03-19

3. Encapsulation structure and dynamics in hypergraphs;Journal of Physics: Complexity;2023-11-22

4. Fast Maximal Quasi-clique Enumeration: A Pruning and Branching Co-Design Approach;Proceedings of the ACM on Management of Data;2023-11-13

5. Multiset-Trie Data Structure;Algorithms;2023-03-20

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3