Inverted files versus signature files for text indexing

Author:

Zobel Justin1,Moffat Alistair2,Ramamohanarao Kotagiri2

Affiliation:

1. RMIT, Melbourne, Australia

2. The Univ. of Melbourne, Parkville, Victoria, Australia

Abstract

Two well-known indexing methods are inverted files and signature files. We have undertaken a detailed comparison of these two approaches in the context of text indexing, paying particular attention to query evaluation speed and space requirements. We have examined their relative performance using both experimentation and a refined approach to modeling of signature files, and demonstrate that inverted files are distinctly superior to signature files. Not only can inverted files be used to evaluate typical queries in less time than can signature files, but inverted files require less space and provide greater functionality. Our results also show that a synthetic text database can provide a realistic indication of the behavior of an actual text database. The tools used to generate the synthetic database have been made publicly available

Publisher

Association for Computing Machinery (ACM)

Subject

Information Systems

Cited by 174 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Generative Retrieval via Term Set Generation;Proceedings of the 47th International ACM SIGIR Conference on Research and Development in Information Retrieval;2024-07-10

2. PsyChatbot: A Psychological Counseling Agent Towards Depressed Chinese Population Based on Cognitive Behavioural Therapy;ACM Transactions on Asian and Low-Resource Language Information Processing;2024-07-05

3. Linking Entities across Relations and Graphs;ACM Transactions on Database Systems;2024-02-28

4. Dense Text Retrieval based on Pretrained Language Models: A Survey;ACM Transactions on Information Systems;2023-12-18

5. Block-segmentation vectors for arousal prediction using semi-supervised learning;Applied Soft Computing;2023-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3