Phosphoproteomic analysis of lettuce (Lactuca sativa L.) reveals starch and sucrose metabolism functions during bolting induced by high temperature

Author:

Qin XiaoxiaoORCID,Li Panpan,Lu Shaowei,Sun Yanchuan,Meng Lifeng,Hao Jinghong,Fan Shuangxi

Abstract

High temperatures induce early bolting in lettuce (Lactuca sativa L.), which decreases both quality and production. However, knowledge of the molecular mechanism underlying high temperature promotes premature bolting is lacking. In this study, we compared lettuce during the bolting period induced by high temperatures (33/25 °C, day/night) to which raised under controlled temperatures (20/13 °C, day/night) using iTRAQ-based phosphoproteomic analysis. A total of 3,814 phosphorylation sites located on 1,766 phosphopeptides from 987 phosphoproteins were identified after high-temperature treatment,among which 217 phosphoproteins significantly changed their expression abundance (116 upregulated and 101 downregulated). Most phosphoproteins for which the abundance was altered were associated with the metabolic process, with the main molecular functions were catalytic activity and transporter activity. Regarding the functional pathway, starch and sucrose metabolism was the mainly enriched signaling pathways. Hence, high temperature influenced phosphoprotein activity, especially that associated with starch and sucrose metabolism. We suspected that the lettuce shorten its growth cycle and reduce vegetative growth owing to changes in the contents of starch and soluble sugar after high temperature stress, which then led to early bolting/flowering. These findings improve our understanding of the regulatory molecular mechanisms involved in lettuce bolting.

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3