A CLSTM and transfer learning based CFDAMA strategy in satellite communication networks

Author:

He QiangORCID,Xiang Zheng,Ren Peng

Abstract

With the development of the economy and technology, people’s requirement for communication is also increasing. Satellite communication networks have been paid more and more attention because of their broadband service capability and wide coverage. In this paper, we investigate the scheme of convolutional long short term memory (CLSTM) network and transfer learning (TL) based combined free/demand assignment multiple access (CFDAMA) scheme (CFDAMA-CLSTMTL), which is a new multiple access scheme in the satellite communication networks. Generally, there is a delay time T between sending a request from the user to the satellite and receiving a reply from the satellite. So far, the traditional multiple access schemes have not processed the data generated in this period. So, in order to transmit the data in time, we propose a new prediction method CLSTMTL, which can be used to predict the data generated in this period. We introduce the prediction method into the CFDAMA scheme so that it can reduce data accumulation by the way of sending the slots request which is the sum of slots requested by the user and the predicted slots generated in the delay time. A comparison with CFDAMA-PA and CFDAMA-PB is provided through simulation results, which gives the effect of the CFDAMA-CLSTMTL in a satellite communication network.

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference30 articles.

1. Jianxin L I, Meng L I, et al. “Satellite communication on the non-geostationary system and the geostationary system in the Fixed-satellite service”, Wireless and Optical Communications Conference. Beijing, China, 2019.

2. Broadband hybrid datellite-terrestrial communication systems based on cognitive radio toward 5G;M. Jia;IEEE Wireless Commun.,2016

3. Energy efficient hybrid satellite terrestrial 5G networks with software defined features;J. Zhang;J. Commun. Netw.,2017

4. Radio resource management in future terrestrial-satellite communication networks;L. Kuang;IEEE Wireless Commun.,2017

5. Satellite Communications in the 5G Era

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3