Adaptive Access Selection Algorithm for Large-Scale Satellite Networks Based on Dynamic Domain

Author:

Liu GaosaiORCID,Jiang Xinglong,Li Huawang,Zhang Zhenhua,Sun Siyue,Liang Guang

Abstract

The traditional satellite access selection algorithm, which is used in large-scale satellite networks, has some disadvantages, such as frequent link switching, high interrupt probability, and unable to adapt to a dynamic environment. According to the periodicity of the large-scale satellite network and the prior knowledge provided by acknowledgment packages, a dynamic domain-based adaptive access algorithm (DAA) is proposed in this paper. Firstly, this algorithm divides the large-scale satellite network into different domains according to the minimum elevation angle of the Earth station (ES) and the predictable characteristics of the trajectory of the satellite. Then, the ES selects the access satellites according to the relationship between the traffic volume and the satellites’ coverage time. Finally, the ES selects the backup access satellite based on the satellites’ coverage time, the traffic volume of the ES, satellite status provided by prior knowledge, and other information. When the access satellite cannot satisfy the communication demand, the ES adaptively switches the earth-satellite link to the backup access satellite. The ES first choice of access satellite does not require interaction with the satellites, reducing the consumption of communication resources. The selection strategy of backup access satellite and the concept of virtual destination address proposed in this paper can reduce the routing overhead after switching. Through theoretical analysis and simulation results in the StarLink constellation, it is proved that this paper improves the coverage time utilization of accessing satellites and reduces the switching probability compared with the traditional access algorithm, which is more suitable for ES to access large-scale satellite networks.

Funder

Youth Innovation Promotion Association CAS

National Natural Science Foundation of China

Shanghai Industrial Collaborative Innovation Project

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference30 articles.

1. A technical comparison of three low earth orbit satellite constellation systems to provide global broadband

2. Laser Intersatellite Links in a Starlink Constellation: A Classification and Analysis

3. Throughput and Capacity Evaluation of 5G New Radio Non-Terrestrial Networks with LEO Satellites;Sedin;Proceedings of the GLOBECOM 2020—2020 IEEE Global Communications Conference,2020

4. The development of emerging satellite internet constellations;Liu;Sci. Technol. Rev.,2016

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3