Semi-supervised learning for an improved diagnosis of COVID-19 in CT images

Author:

Han Chang HeeORCID,Kim MisukORCID,Kwak Jin TaeORCID

Abstract

Coronavirus disease 2019 (COVID-19) has been spread out all over the world. Although a real-time reverse-transcription polymerase chain reaction (RT-PCR) test has been used as a primary diagnostic tool for COVID-19, the utility of CT based diagnostic tools have been suggested to improve the diagnostic accuracy and reliability. Herein we propose a semi-supervised deep neural network for an improved detection of COVID-19. The proposed method utilizes CT images in a supervised and unsupervised manner to improve the accuracy and robustness of COVID-19 diagnosis. Both labeled and unlabeled CT images are employed. Labeled CT images are used for supervised leaning. Unlabeled CT images are utilized for unsupervised learning in a way that the feature representations are invariant to perturbations in CT images. To systematically evaluate the proposed method, two COVID-19 CT datasets and three public CT datasets with no COVID-19 CT images are employed. In distinguishing COVID-19 from non-COVID-19 CT images, the proposed method achieves an overall accuracy of 99.83%, sensitivity of 0.9286, specificity of 0.9832, and positive predictive value (PPV) of 0.9192. The results are consistent between the COVID-19 challenge dataset and the public CT datasets. For discriminating between COVID-19 and common pneumonia CT images, the proposed method obtains 97.32% accuracy, 0.9971 sensitivity, 0.9598 specificity, and 0.9326 PPV. Moreover, the comparative experiments with respect to supervised learning and training strategies demonstrate that the proposed method is able to improve the diagnostic accuracy and robustness without exhaustive labeling. The proposed semi-supervised method, exploiting both supervised and unsupervised learning, facilitates an accurate and reliable diagnosis for COVID-19, leading to an improved patient care and management.

Funder

National Research Foundation of Korea

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3