Validation and repurposing of the MSL-COVID-19 score for prediction of severe COVID-19 using simple clinical predictors in a triage setting: The Nutri-CoV score

Author:

Bello-Chavolla Omar YaxmehenORCID,Antonio-Villa Neftali E.,Ortiz-Brizuela Edgar,Vargas-Vázquez Arsenio,González-Lara María Fernanda,de Leon Alfredo PonceORCID,Sifuentes-Osornio José,Aguilar-Salinas Carlos A.

Abstract

Background During the COVID-19 pandemic, risk stratification has been used to decide patient eligibility for inpatient, critical and domiciliary care. Here, we sought to validate the MSL-COVID-19 score, originally developed to predict COVID-19 mortality in Mexicans. Also, an adaptation of the formula is proposed for the prediction of COVID-19 severity in a triage setting (Nutri-CoV). Methods We included patients evaluated from March 16th to August 17th, 2020 at the Instituto Nacional de Ciencias Médicas y Nutrición, defining severe COVID-19 as a composite of death, ICU admission or requirement for intubation (n = 3,007). We validated MSL-COVID-19 for prediction of mortality and severe disease. Using Elastic Net Cox regression, we trained (n = 1,831) and validated (n = 1,176) a model for prediction of severe COVID-19 using MSL-COVID-19 along with clinical assessments obtained at a triage setting. Results The variables included in MSL-COVID-19 are: pneumonia, early onset type 2 diabetes, age > 65 years, chronic kidney disease, any form of immunosuppression, COPD, obesity, diabetes, and age <40 years. MSL-COVID-19 had good performance to predict COVID-19 mortality (c-statistic = 0.722, 95%CI 0.690–0.753) and severity (c-statistic = 0.777, 95%CI 0.753–0.801). The Nutri-CoV score includes the MSL-COVID-19 plus respiratory rate, and pulse oximetry. This tool had better performance in both training (c-statistic = 0.797, 95%CI 0.765–0.826) and validation cohorts (c-statistic = 0.772, 95%CI 0.0.745–0.800) compared to other severity scores. Conclusions MSL-COVID-19 predicts inpatient COVID-19 lethality. The Nutri-CoV score is an adaptation of MSL-COVID-19 to be used in a triage environment. Both scores have been deployed as web-based tools for clinical use in a triage setting.

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference31 articles.

1. Global, regional, and national estimates of the population at increased risk of severe COVID-19 due to underlying health conditions in 2020: a modelling study;A Clark;The Lancet Global Health,2020

2. Datos Abiertos—Dirección General de Epidemiología | Secretaría de Salud | Gobierno | gob.mx [Internet]. [cited 18 Apr 2020]. https://www.gob.mx/salud/documentos/datos-abiertos-152127?idiom=es

3. Estimates of the severity of coronavirus disease 2019: a model-based analysis;R Verity;Lancet Infect Dis,2020

4. Comorbidity and its impact on 1590 patients with COVID-19 in China: a nationwide analysis;W-J Guan;Eur Respir J,2020

5. COVID-19 and the impact of social determinants of health;EM Abrams;Lancet Respir Med,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3