Training and testing of a gradient boosted machine learning model to predict adverse outcome in patients presenting to emergency departments with suspected covid-19 infection in a middle-income setting

Author:

Fuller Gordon WardORCID,Hasan Madina,Hodkinson Peter,McAlpine David,Goodacre Steve,Bath Peter A.,Sbaffi Laura,Omer Yasein,Wallis Lee,Marincowitz Carl

Abstract

COVID-19 infection rates remain high in South Africa. Clinical prediction models may be helpful for rapid triage, and supporting clinical decision making, for patients with suspected COVID-19 infection. The Western Cape, South Africa, has integrated electronic health care data facilitating large-scale linked routine datasets. The aim of this study was to develop a machine learning model to predict adverse outcome in patients presenting with suspected COVID-19 suitable for use in a middle-income setting. A retrospective cohort study was conducted using linked, routine data, from patients presenting with suspected COVID-19 infection to public-sector emergency departments (EDs) in the Western Cape, South Africa between 27th August 2020 and 31st October 2021. The primary outcome was death or critical care admission at 30 days. An XGBoost machine learning model was trained and internally tested using split-sample validation. External validation was performed in 3 test cohorts: Western Cape patients presenting during the Omicron COVID-19 wave, a UK cohort during the ancestral COVID-19 wave, and a Sudanese cohort during ancestral and Eta waves. A total of 282,051 cases were included in a complete case training dataset. The prevalence of 30-day adverse outcome was 4.0%. The most important features for predicting adverse outcome were the requirement for supplemental oxygen, peripheral oxygen saturations, level of consciousness and age. Internal validation using split-sample test data revealed excellent discrimination (C-statistic 0.91, 95% CI 0.90 to 0.91) and calibration (CITL of 1.05). The model achieved C-statistics of 0.84 (95% CI 0.84 to 0.85), 0.72 (95% CI 0.71 to 0.73), and 0.62, (95% CI 0.59 to 0.65) in the Omicron, UK, and Sudanese test cohorts. Results were materially unchanged in sensitivity analyses examining missing data. An XGBoost machine learning model achieved good discrimination and calibration in prediction of adverse outcome in patients presenting with suspected COVID19 to Western Cape EDs. Performance was reduced in temporal and geographical external validation.

Funder

Bill and Melinda Gates Foundation

Publisher

Public Library of Science (PLoS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3