Identifying geographically differentiated features of Ethopian Nile tilapia (Oreochromis niloticus) morphology with machine learning

Author:

Wöber WilfriedORCID,Curto Manuel,Tibihika Papius,Meulenbroek PaulORCID,Alemayehu Esayas,Mehnen Lars,Meimberg Harald,Sykacek PeterORCID

Abstract

Visual characteristics are among the most important features for characterizing the phenotype of biological organisms. Color and geometric properties define population phenotype and allow assessing diversity and adaptation to environmental conditions. To analyze geometric properties classical morphometrics relies on biologically relevant landmarks which are manually assigned to digital images. Assigning landmarks is tedious and error prone. Predefined landmarks may in addition miss out on information which is not obvious to the human eye. The machine learning (ML) community has recently proposed new data analysis methods which by uncovering subtle features in images obtain excellent predictive accuracy. Scientific credibility demands however that results are interpretable and hence to mitigate the black-box nature of ML methods. To overcome the black-box nature of ML we apply complementary methods and investigate internal representations with saliency maps to reliably identify location specific characteristics in images of Nile tilapia populations. Analyzing fish images which were sampled from six Ethiopian lakes reveals that deep learning improves on a conventional morphometric analysis in predictive performance. A critical assessment of established saliency maps with a novel significance test reveals however that the improvement is aided by artifacts which have no biological interpretation. More interpretable results are obtained by a Bayesian approach which allows us to identify genuine Nile tilapia body features which differ in dependence of the animals habitat. We find that automatically inferred Nile tilapia body features corroborate and expand the results of a landmark based analysis that the anterior dorsum, the fish belly, the posterior dorsal region and the caudal fin show signs of adaptation to the fish habitat. We may thus conclude that Nile tilapia show habitat specific morphotypes and that a ML analysis allows inferring novel biological knowledge in a reproducible manner.

Funder

Open Access Publishing Fund of the University of Natural Resources and Life Sciences, Vienna

Austrian Agency for International Cooperation in Education and Research

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3