Vehicle side-slip angle estimation under snowy conditions using machine learning

Author:

Novotny Georg12ORCID,Liu Yuzhou1,Morales-Alvarez Walter1ORCID,Wöber Wilfried23ORCID,Olaverri-Monreal Cristina1ORCID

Affiliation:

1. Department Intelligent Transport Systems, Johannes Kepler University, Upper Austria, Austria

2. Industrial Engineering, UAS Technikum Wien, Vienna, Vienna, Austria

3. Institute for Integrative Nature Conservation Research, University of Natural Resources and Life Sciences, Vienna, Vienna, Austria

Abstract

Adverse weather conditions, such as snow-covered roads, represent a challenge for autonomous vehicle research. This is particularly challenging as it might cause misalignment between the longitudinal axis of the vehicle and the actual direction of travel. In this paper, we extend previous work in the field of autonomous vehicles on snow-covered roads and present a novel approach for side-slip angle estimation that combines perception with a hybrid artificial neural network pushing the prediction horizon beyond existing approaches. We exploited the feature extraction capabilities of convolutional neural networks and the dynamic time series relationship learning capabilities of gated recurrent units and combined them with a motion model to estimate the side-slip angle. Subsequently, we evaluated the model using the 3DCoAutoSim simulation platform, where we designed a suitable simulation environment with snowfall, friction, and car tracks in snow. The results revealed that our approach outperforms the baseline model for prediction horizons ⩾ 2 seconds. This extended prediction horizon has practical implications, by providing drivers and autonomous systems with more time to make informed decisions, thereby enhancing road safety.

Publisher

IOS Press

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3