A direct comparison of theory-driven and machine learning prediction of suicide: A meta-analysis

Author:

Schafer Katherine M.ORCID,Kennedy Grace,Gallyer AustinORCID,Resnik Philip

Abstract

Theoretically-driven models of suicide have long guided suicidology; however, an approach employing machine learning models has recently emerged in the field. Some have suggested that machine learning models yield improved prediction as compared to theoretical approaches, but to date, this has not been investigated in a systematic manner. The present work directly compares widely researched theories of suicide (i.e., BioSocial, Biological, Ideation-to-Action, and Hopelessness Theories) to machine learning models, comparing the accuracy between the two differing approaches. We conducted literature searches using PubMed, PsycINFO, and Google Scholar, gathering effect sizes from theoretically-relevant constructs and machine learning models. Eligible studies were longitudinal research articles that predicted suicide ideation, attempts, or death published prior to May 1, 2020. 124 studies met inclusion criteria, corresponding to 330 effect sizes. Theoretically-driven models demonstrated suboptimal prediction of ideation (wOR = 2.87; 95% CI, 2.65–3.09; k = 87), attempts (wOR = 1.43; 95% CI, 1.34–1.51; k = 98), and death (wOR = 1.08; 95% CI, 1.01–1.15; k = 78). Generally, Ideation-to-Action (wOR = 2.41, 95% CI = 2.21–2.64, k = 60) outperformed Hopelessness (wOR = 1.83, 95% CI 1.71–1.96, k = 98), Biological (wOR = 1.04; 95% CI .97–1.11, k = 100), and BioSocial (wOR = 1.32, 95% CI 1.11–1.58, k = 6) theories. Machine learning provided superior prediction of ideation (wOR = 13.84; 95% CI, 11.95–16.03; k = 33), attempts (wOR = 99.01; 95% CI, 68.10–142.54; k = 27), and death (wOR = 17.29; 95% CI, 12.85–23.27; k = 7). Findings from our study indicated that across all theoretically-driven models, prediction of suicide-related outcomes was suboptimal. Notably, among theories of suicide, theories within the Ideation-to-Action framework provided the most accurate prediction of suicide-related outcomes. When compared to theoretically-driven models, machine learning models provided superior prediction of suicide ideation, attempts, and death.

Funder

National Institute of Mental Health

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference43 articles.

1. World Health Organization. Suicide. [Internet] 2018 [cited 2 May 2019] Available from: https://www.who.int/news-room/fact-sheets/detail/suicide.

2. Centers for Disease Control and Prevention. Web-based Injury Statistics Query and Reporting System (WISQARS). [Internet] no date [cited 2 May 2019] Available from: https://webappa.cdc.gov/sasweb/ncipc/leadcause.html.

3. Toward a biosignature for suicide;M. A. Oquendo;The American journal of psychiatry,2014

4. Hopelessness as a predictor of eventual suicide;A Beck;Annals of the New York Academy of sciences,1986

5. The interpersonal theory of suicide;K. A. Van Orden;Psychological review,2010

Cited by 43 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3