Approaches for the Use of AI in Workplace Health Promotion and Prevention: Systematic Scoping Review

Author:

Lange MartinORCID,Löwe AlexandraORCID,Kayser InaORCID,Schaller AndreaORCID

Abstract

Background Artificial intelligence (AI) is an umbrella term for various algorithms and rapidly emerging technologies with huge potential for workplace health promotion and prevention (WHPP). WHPP interventions aim to improve people’s health and well-being through behavioral and organizational measures or by minimizing the burden of workplace-related diseases and associated risk factors. While AI has been the focus of research in other health-related fields, such as public health or biomedicine, the transition of AI into WHPP research has yet to be systematically investigated. Objective The systematic scoping review aims to comprehensively assess an overview of the current use of AI in WHPP. The results will be then used to point to future research directions. The following research questions were derived: (1) What are the study characteristics of studies on AI algorithms and technologies in the context of WHPP? (2) What specific WHPP fields (prevention, behavioral, and organizational approaches) were addressed by the AI algorithms and technologies? (3) What kind of interventions lead to which outcomes? Methods A systematic scoping literature review (PRISMA-ScR [Preferred Reporting Items for Systematic Reviews and Meta-Analyses extension for Scoping Reviews]) was conducted in the 3 academic databases PubMed, Institute of Electrical and Electronics Engineers, and Association for Computing Machinery in July 2023, searching for papers published between January 2000 and December 2023. Studies needed to be (1) peer-reviewed, (2) written in English, and (3) focused on any AI-based algorithm or technology that (4) were conducted in the context of WHPP or (5) an associated field. Information on study design, AI algorithms and technologies, WHPP fields, and the patient or population, intervention, comparison, and outcomes framework were extracted blindly with Rayyan and summarized. Results A total of 10 studies were included. Risk prevention and modeling were the most identified WHPP fields (n=6), followed by behavioral health promotion (n=4) and organizational health promotion (n=1). Further, 4 studies focused on mental health. Most AI algorithms were machine learning-based, and 3 studies used combined deep learning algorithms. AI algorithms and technologies were primarily implemented in smartphone apps (eg, in the form of a chatbot) or used the smartphone as a data source (eg, Global Positioning System). Behavioral approaches ranged from 8 to 12 weeks and were compared to control groups. Additionally, 3 studies evaluated the robustness and accuracy of an AI model or framework. Conclusions Although AI has caught increasing attention in health-related research, the review reveals that AI in WHPP is marginally investigated. Our results indicate that AI is promising for individualization and risk prediction in WHPP, but current research does not cover the scope of WHPP. Beyond that, future research will profit from an extended range of research in all fields of WHPP, longitudinal data, and reporting guidelines. Trial Registration OSF Registries osf.io/bfswp; https://osf.io/bfswp

Publisher

JMIR Publications Inc.

Reference92 articles.

1. History of artificial intelligence in medicine

2. McCarthyJPrograms with common sense mechanisation of thought processesProceedings of the Symposium of the National Physics Laboratory1959Proceedings of the Symposium of the National Physics Laboratory24th-27th November 1958Teddington, MiddlesexLondon, UKHer Majesty's Stationery Office310

3. Machine Learning and Artificial Intelligence: Definitions, Applications, and Future Directions

4. A Path Toward Explainable AI and Autonomous Adaptive Intelligence: Deep Learning, Adaptive Resonance, and Models of Perception, Emotion, and Action

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3