A comparison between internal protein nanoenvironments of α-helices and β-sheets

Author:

Mazoni IvanORCID,Salim Jose AugustoORCID,de Moraes Fabio Rogerio,Borro Luiz,Neshich Goran

Abstract

Secondary structure elements are generally found in almost all protein structures revealed so far. In general, there are more β-sheets than α helices found inside the protein structures. For example, considering the PDB, DSSP and Stride definitions for secondary structure elements and by using the consensus among those, we found 60,727 helices in 4,376 chains identified in all-α structures and 129,440 helices in 7,898 chains identified in all-α and α + β structures. For β-sheets, we identified 837,345 strands in 184,925 β-sheets located within 50,803 chains of all-β structures and 1,541,961 strands in 355,431 β-sheets located within 86,939 chains in all-β and α + β structures (data extracted on February 1, 2019). In this paper we would first like to address a full characterization of the nanoenvironment found at beta sheet locations and then compare those characteristics with the ones we already published for alpha helical secondary structure elements. For such characterization, we use here, as in our previous work about alpha helical nanoenvironments, set of STING protein structure descriptors. As in the previous work, we assume that we will be able to prove that there is a set of protein structure parameters/attributes/descriptors, which could fully describe the nanoenvironment around beta sheets and that appropriate statistically analysis will point out to significant changes in values for those parameters when compared for loci considered inside and outside defined secondary structure element. Clearly, while the univariate analysis is straightforward and intuitively understood, it is severely limited in coverage: it could be successfully applied at best in up to 25% of studied cases. The indication of the main descriptors for the specific secondary structure element (SSE) by means of the multivariate MANOVA test is the strong statistical tool for complete discrimination among the SSEs, and it revealed itself as the one with the highest coverage. The complete description of the nanoenvironment, by analogy, might be understood in terms of describing a key lock system, where all lock mini cylinders need to combine their elevation (controlled by a matching key) to open the lock. The main idea is as follows: a set of descriptors (cylinders in the key-lock example) must precisely combine their values (elevation) to form and maintain a specific secondary structure element nanoenvironment (a required condition for a key being able to open a lock).

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference8 articles.

1. Study of specific nanoenvironments containing α-helices in all-α and (α+ β)+(α/β) proteins;MAZONI Iea;PloS one,2018

2. Protein Data Bank: the single global archive for 3D macromolecular structure;consortium w;Nucleic Acids Research,2018

3. Sting_RDB: A relational database of structural parameters for protein analysis with support for data warehousing and data mining;OLIVEIRA SRdM ea;Genetics and molecular research,2007

4. Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences;W LI;Bioinformatics,2006

5. The Kolmogorov-Smirnov test for goodness of fit;FJ MASSEY;Journal of the American statistical Association,1951

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3