Microbiological quality and genotoxicity of domestic water sources: A combined approach using Micro Biological Survey method and mutagenesis assay (micronucleus test) in root tips of Vicia faba in the West region of Cameroon

Author:

Mabvouna Rodrigue BiguiohORCID,Sali Ben Béchir Adogaye ,Nkamedjie Patrick Martial Pete,Wondeu Andrillene Laure Deutou,Sanou Sobze Martin,Kemogne Jean Blaise,Colizzi Vittorio

Abstract

At least 2.1 billion people around the world use contaminated drinking water, causing 485,000 diarrheal deaths each year, mostly among children under 5 years old. A study conducted 10 years ago in Bafoussam (West Cameroon) recorded concentrations of bacteria among surface and groundwater. High levels of bicarbonates, phosphates, chlorides and suspended matters were also found. The aim of this study was to assess the microbiological and chemical qualities of domestic water sources in 5 localities of the West region of Cameroon. Water samples from 22 water sources (wells, springs, water drilling and river) were aseptically collected in plastic bottles and transferred in 50 ml sterile tubes. For chlorinated water sources, 1 ml of Thiosulfate was added to the water sample; immediately placed in an ice box and transported to the laboratory for analysis. Water temperature and pH were measured on site. The microbiological quality of water was determined by testing Total Coliforms (TC) using the Micro Biological Survey method. 1 ml of each water sample was inoculated in the MBS vial initially rehydrated with 10 ml of sterile distilled water. The initial color of the vials is red. Color changes were monitored at three different time intervals (12h, 19h and 24h), corresponding to three levels of contamination. The chemical quality of water was assessed using micronucleus (MN) test in selected Vicia faba seeds secondary root tips permanently mounted in Dibutylphthalate Polystyrene Xylene mountant for histology after 72 hours of direct exposition in water samples and in dark. The mitotic indices and MN frequencies were evaluated in 10 root tips per site analysing 5000 cells per tip. Statistical analyses were done using Stata IC/15.0 software. The Student t-test was used for mean comparison and the significance level was set at 1%. The majority of samples were collected from wells (63.6%). The mean water pH ranged from 5.5 to 8.3 and the temperature varied from 23 to 26°C. A very high concentration of TC [>103 CFU/ml] was found in 8 (36.4%) samples. 10 (45.5%) and 2 (9.1%) samples turned yellow at 19 and 24 hours respectively after incubation corresponding to TC concentration of [10<x<103 CFU/ml] and [1<x< 10 CFU/ml]. The MN frequency was higher (P ≤ 0.01) compared to the negative control in 9 (40.9%) water samples indicating significant genotoxic effects of these water sources. This study highlighted the poor quality of domestic water sources in West region of Cameroon and the need to conduct regular monitoring of drinking water sources. Community capacity building on water treatment methods, including good wastes management should be implemented to help improve water quality.

Funder

by Bread for the World

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference42 articles.

1. Realizing the maximum health benefits from water quality improvements in the home: A case from Zaka District, Zimbabwe.;S Moyo;Phys Chem Earth,2004

2. World Health Organization, United Nations Children’s Fund (UNICEF). Progress on drinking water, sanitation and hygiene: 2017 update and SDG baselines. ISBN 978-92-4-151289-3. Available: https://creativecommons.org/licenses/by-nc-sa/3.0/igo

3. United States Environmental Protection Agency. Contaminant Candidate List (CCL) and Regulatory Determination. Types of Drinking Water Contaminants, U.S. Environmental Protection Agency. Office of Water (4303T) 1200 Pennsylvania Avenue, NW Washington, DC 20460. Available: https://www.epa.gov/ccl/types-drinking-water-contaminants

4. The Sources of Chemical Contaminants in Food and Their Health Implications.;Irfan A. Rather;Frontiers in Pharmacology,2017

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3