High resolution ultrasound imaging for repeated measure of wound tissue morphometry, biomechanics and hemodynamics under fetal, adult and diabetic conditions

Author:

Gnyawali Surya C.,Sinha Mithun,El Masry Mohamed S.ORCID,Wulff Brian,Ghatak Subhadip,Soto-Gonzalez Fidel,Wilgus Traci A.,Roy Sashwati,Sen Chandan K.ORCID

Abstract

Non-invasive, repeated interrogation of the same wound is necessary to understand the tissue repair continuum. In this work, we sought to test the significance of non-invasive high-frequency high-resolution ultrasound technology for such interrogation. High-frequency high-resolution ultrasound imaging was employed to investigate wound healing under fetal and adult conditions. Quantitative tissue cellularity and elastic strain was obtained for visualization of unresolved inflammation using Vevo strain software. Hemodynamic properties of the blood flow in the artery supplying the wound-site were studied using color Doppler flow imaging. Non-invasive monitoring of fetal and adult wound healing provided unprecedented biomechanical and functional insight. Fetal wounds showed highly accelerated closure with transient perturbation of wound tissue cellularity. Fetal hemodynamics was unique in that sharp fall in arterial pulse pressure (APP) which was rapidly restored within 48h post-wounding. In adults, APP transiently increased post-wounding before returning to the pre-wounding levels by d10 post-wounding. The pattern of change in the elasticity of wound-edge tissue of diabetics was strikingly different. Severe strain acquired during the early inflammatory phase persisted with a slower recovery of elasticity compared to that of the non-diabetic group. Wound bed of adult diabetic mice (db/db) showed persistent hypercellularity compared to littermate controls (db/+) indicative of prolonged inflammation. Normal skin strain of db/+ and db/db were asynchronous. In db/db, severe strain acquired during the early inflammatory phase persisted with a slower recovery of elasticity compared to that of non-diabetics. This study showcases a versatile clinically relevant imaging platform suitable for real-time analyses of functional wound healing.

Funder

National Institutes of Health

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3