Abstract
Flower bud development is a defining feature of walnut, which contributes to the kernel yield, yield stability, fruit quality and commodity value. However, little is known about the mechanism of the flower bud development in walnut. Here, the stages of walnut female flower bud development were divided into five period (P01-05) by using histological observation. They were further studied through PacBio Iso-Seq and RNA-seq analysis. Accordingly, we obtained 52,875 full-length transcripts, where 4,579 were new transcripts, 3,065 were novel genes, 1,437 were consensus lncRNAs and 20,813 were alternatively spliced isoforms. These transcripts greatly improved the current genome annotation and enhanced our understanding of the walnut transcriptome. Next, RNA sequencing of female flower buds at five periods revealed that circadian rhythm-plant was commonly enriched along with the flower bud developmental gradient. A total of 14 differentially expressed genes (DEGs) were identified, and six of them were confirmed by real-time quantitative analysis. Additionally, six and two differentially expressed clock genes were detected to be regulated by AS events and lncRNAs, respectively. All these detected plant circadian genes form a complex interconnected network to regulate the flower bud development. Thus, investigation of key genes associated with the circadian clock could clarify the process of flower bud development in walnut.
Funder
Key Technologies Research and Development Program
National Natural Science Foundation of China
Key Laboratory of Resource Biology and Biotechnology in Western China
Fruit Tree Discipline Cultivation Program of Institute of Horticultural and Crops, Xinjiang Academy of Agricultural Sciences
Major Scientific and Technological Projects of the Corps
Publisher
Public Library of Science (PLoS)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献