Abstract
Monascus is a filamentous fungus that is widely used for producing Monascus pigments in the food industry in Southeast Asia. While the development of bioinformatics has helped elucidate the molecular mechanism underlying metabolic engineering of secondary metabolite biosynthesis, the biological information on the metabolic engineering of the morphology of Monascus remains unclear. In this study, the whole genome of M. purpureus CSU-M183 strain was sequenced using combined single-molecule real-time DNA sequencing and next-generation sequencing platforms. The length of the genome assembly was 23.75 Mb in size with a GC content of 49.13%, 69 genomic contigs and encoded 7305 putative predicted genes. In addition, we identified the secondary metabolite biosynthetic gene clusters and the chitin synthesis pathway in the genome of the high pigment-producing M. purpureus CSU-M183 strain. Furthermore, it is shown that the expression levels of most Monascus pigment and citrinin clusters located genes were significantly enhanced via atmospheric room temperature plasma mutagenesis. The results provide a basis for understanding the secondary metabolite biosynthesis, and constructing the metabolic engineering of the morphology of Monascus.
Funder
National Natural Science Foundation of China
Natural Science Foundation of Hunan Province
Hunan Provincial Key Laboratory of Food Safety Monitoring and Early Waring
Education Department of Scientific Research Project of Hunan Province
Education Department of Postgraduate Research and Innovation Project of Hunan Province
Publisher
Public Library of Science (PLoS)
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献