Detection and differentiation of ataxic and hypokinetic dysarthria in cerebellar ataxia and parkinsonian disorders via wave splitting and integrating neural networks

Author:

Song JoomeeORCID,Lee Ju Hwan,Choi Jungeun,Suh Mee Kyung,Chung Myung Jin,Kim Young Hun,Park Jeongho,Choo Seung Ho,Son Ji Hyun,Lee Dong Yeong,Ahn Jong Hyeon,Youn Jinyoung,Kim Kyung-SuORCID,Cho Jin Whan

Abstract

Dysarthria may present during the natural course of many degenerative neurological conditions. Hypokinetic and ataxic dysarthria are common in movement disorders and represent the underlying neuropathology. We developed an artificial intelligence (AI) model to distinguish ataxic dysarthria and hypokinetic dysarthria from normal speech and differentiate ataxic and hypokinetic speech in parkinsonian diseases and cerebellar ataxia. We screened 804 perceptual speech analyses performed in the Samsung Medical Center Neurology Department between January 2017 and December 2020. The data of patients diagnosed with parkinsonian disorders or cerebellar ataxia were included. Two speech tasks (numbering from 1 to 50 and reading nine sentences) were analyzed. We adopted convolutional neural networks and developed a patch-wise wave splitting and integrating AI system for audio classification (PWSI-AI-AC) to differentiate between ataxic and hypokinetic speech. Of the 395 speech recordings for the reading task, 76, 112, and 207 were from normal, ataxic dysarthria, and hypokinetic dysarthria subjects, respectively. Of the 409 recordings of the numbering task, 82, 111, and 216 were from normal, ataxic dysarthria, and hypokinetic dysarthria subjects, respectively. The reading and numbering task recordings were classified with 5-fold cross-validation using PWSI-AI-AC as follows: hypokinetic dysarthria vs. others (area under the curve: 0.92 ± 0.01 and 0.92 ± 0.02), ataxia vs. others (0.93 ± 0.04 and 0.89 ± 0.02), hypokinetic dysarthria vs. ataxia (0.96 ± 0.02 and 0.95 ± 0.01), hypokinetic dysarthria vs. none (0.86 ± 0.03 and 0.87 ± 0.05), and ataxia vs. none (0.87 ± 0.07 and 0.87 ± 0.09), respectively. PWSI-AI-AC showed reliable performance in differentiating ataxic and hypokinetic dysarthria and effectively augmented data to classify the types even with limited training samples. The proposed fully automatic AI system outperforms neurology residents. Our model can provide effective guidelines for screening related diseases and differential diagnosis of neurodegenerative diseases.

Funder

the Korea Medical Device Development Fund of the Korean government

the Technology Innovation Program of the Ministry of Trade, Industry & Energy

the Future Medicine 20*30 Project of the Samsung Medical Center

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3