Automatic stridor detection using small training set via patch-wise few-shot learning for diagnosis of multiple system atrophy

Author:

Ahn Jong Hyeon,Lee Ju Hwan,Lim Chae Yeon,Joo Eun Yeon,Youn Jinyoung,Chung Myung Jin,Cho Jin Whan,Kim Kyungsu

Abstract

AbstractStridor is a rare but important non-motor symptom that can support the diagnosis and prediction of worse prognosis in multiple system atrophy. Recording sounds generated during sleep by video-polysomnography is recommended for detecting stridor, but the analysis is labor intensive and time consuming. A method for automatic stridor detection should be developed using technologies such as artificial intelligence (AI) or machine learning. However, the rarity of stridor hinders the collection of sufficient data from diverse patients. Therefore, an AI method with high diagnostic performance should be devised to address this limitation. We propose an AI method for detecting patients with stridor by combining audio splitting and reintegration with few-shot learning for diagnosis. We used video-polysomnography data from patients with stridor (19 patients with multiple system atrophy) and without stridor (28 patients with parkinsonism and 18 patients with sleep disorders). To the best of our knowledge, this is the first study to propose a method for stridor detection and attempt the validation of few-shot learning to process medical audio signals. Even with a small training set, a substantial improvement was achieved for stridor detection, confirming the clinical utility of our method compared with similar developments. The proposed method achieved a detection accuracy above 96% using data from only eight patients with stridor for training. Performance improvements of 4%–13% were achieved compared with a state-of-the-art AI baseline. Moreover, our method determined whether a patient had stridor and performed real-time localization of the corresponding audio patches, thus providing physicians with support for interpreting and efficiently employing the results of this method.

Funder

Future Medicine 20*30 Project of Samsung Medical Center

Korea Medical Device Development Fund grant funded by the Korean government

Technology Innovation Program funded by the Ministry of Trade, Industry & Energy

National Research Foundation of Korea (NRF) grant funded by the Korean government

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3