Covariate adjustment of spirometric and smoking phenotypes: The potential of neural network models

Author:

Voorhies KirstenORCID,Bie Ruofan,Hokanson John E.,Weiss Scott T.,Chen Wu Ann,Hecker Julian,Hahn Georg,Demeo Dawn L.,Silverman Edwin,Cho Michael H.,Lange Christoph,Lutz Sharon M.

Abstract

To increase power and minimize bias in statistical analyses, quantitative outcomes are often adjusted for precision and confounding variables using standard regression approaches. The outcome is modeled as a linear function of the precision variables and confounders; however, for many complex phenotypes, the assumptions of the linear regression models are not always met. As an alternative, we used neural networks for the modeling of complex phenotypes and covariate adjustments. We compared the prediction accuracy of the neural network models to that of classical approaches based on linear regression. Using data from the UK Biobank, COPDGene study, and Childhood Asthma Management Program (CAMP), we examined the features of neural networks in this context and compared them with traditional regression approaches for prediction of three outcomes: forced expiratory volume in one second (FEV1), age at smoking cessation, and log transformation of age at smoking cessation (due to age at smoking cessation being right-skewed). We used mean squared error to compare neural network and regression models, and found the models performed similarly unless the observed distribution of the phenotype was skewed, in which case the neural network had smaller mean squared error. Our results suggest neural network models have an advantage over standard regression approaches when the phenotypic distribution is skewed. However, when the distribution is not skewed, the approaches performed similarly. Our findings are relevant to studies that analyze phenotypes that are skewed by nature or where the phenotype of interest is skewed as a result of the ascertainment condition.

Funder

National Heart, Lung, and Blood Institute

Eunice Kennedy Shriver National Institute of Child Health and Human Development

National Institute of Mental Health

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference18 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3