A Machine-Learning Approach to Predicting Smoking Cessation Treatment Outcomes

Author:

Coughlin Lara N12,Tegge Allison N13,Sheffer Christine E4,Bickel Warren K12ORCID

Affiliation:

1. Addiction Recovery Research Center, Virginia Tech Carilion Research Institute, Roanoke, VA

2. Department of Psychology, Virginia Tech, Blacksburg, VA

3. Department of Statistics, Virginia Tech, Blacksburg, VA

4. Department of Health Behavior, Roswell Park Comprehensive Cancer Center, Buffalo, NY

Abstract

Abstract Aims Most cigarette smokers want to quit smoking and more than half make an attempt every year, but less than 10% remain abstinent for at least 6 months. Evidence-based tobacco use treatment improves the likelihood of quitting, but more than two-thirds of individuals relapse when provided even the most robust treatments. Identifying for whom treatment is effective will improve the success of our treatments and perhaps identify strategies for improving current approaches. Methods Two cohorts (training: N = 90, validation: N = 71) of cigarette smokers enrolled in group cognitive-behavioral therapy (CBT). Generalized estimating equations were used to identify baseline predictors of outcome, as defined by breath carbon monoxide and urine cotinine. Significant measures were entered as candidate variables to predict quit status. The resulting decision trees were used to predict cessation outcomes in a validation cohort. Results In the training cohort, the decision trees significantly improved on chance classification of smoking status following treatment and at 6-month follow-up. The first split of all decision trees, which was delay discounting, significantly improved on chance classification rates in both the training and validation cohort. Delay discounting emerged as the single best predictor of group CBT treatment response with an average baseline discount rate of ln(k) = −7.1, correctly predicting smoking status of 80% of participants at posttreatment and 81% of participants at follow-up. Conclusions This study provides a first step toward personalized care for smoking cessation though future work is needed to identify individuals that are likely to be successful in treatments beyond group CBT. Implications This study provides a first step toward personalized care for smoking cessation. Using a novel machine-learning approach, baseline measures of clinical and executive functioning are used to predict smoking cessation outcomes following group CBT. A decision point is recommended for the single best predictor of treatment outcomes, delay discounting, to inform future research or clinical practice in an effort to better allocate patients to treatments that are likely to work.

Funder

National Institutes of Health

National Institute on Drug Abuse

Publisher

Oxford University Press (OUP)

Subject

Public Health, Environmental and Occupational Health

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3