Developing predictive hybridization models for phosphorothioate oligonucleotides using high-resolution melting

Author:

Wang Siyuan S.ORCID,Xiong Erhu,Bhadra Sanchita,Ellington Andrew D.

Abstract

The ability to predict nucleic acid hybridization energies has been greatly enabling for many applications, but predictive models require painstaking experimentation, which may limit expansion to non-natural nucleic acid analogues and chemistries. We have assessed the utility of dye-based, high-resolution melting (HRM) as an alternative to UV-Vis determinations of hyperchromicity in order to more quickly acquire parameters for duplex stability prediction. The HRM-derived model for phosphodiester (PO) DNA can make comparable predictions to previously established models. Using HRM, it proved possible to develop predictive models for DNA duplexes containing phosphorothioate (PS) linkages, and we found that hybridization stability could be predicted as a function of sequence and backbone composition for a variety of duplexes, including PS:PS, PS:PO, and partially modified backbones. Individual phosphorothioate modifications destabilize helices by around 0.12 kcal/mol on average. Finally, we applied these models to the design of a catalytic hairpin assembly circuit, an enzyme-free amplification method used for nucleic acid-based molecular detection. Changes in PS circuit behavior were consistent with model predictions, further supporting the addition of HRM modeling and parameters for PS oligonucleotides to the rational design of nucleic acid hybridization.

Funder

John Templeton Foundation

National Science Foundation Graduate Research Fellowship

Welch Foundation

National Natural Science Foundation of China

China Scholarship Council

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3