Identification of an early-stage Parkinson’s disease neuromarker using event-related potentials, brain network analytics and machine-learning

Author:

Hassin-Baer SharonORCID,Cohen Oren S.,Israeli-Korn Simon,Yahalom Gilad,Benizri Sandra,Sand Daniel,Issachar Gil,Geva Amir B.,Shani-Hershkovich RevitalORCID,Peremen Ziv

Abstract

Objective The purpose of this study is to explore the possibility of developing a biomarker that can discriminate early-stage Parkinson’s disease from healthy brain function using electroencephalography (EEG) event-related potentials (ERPs) in combination with Brain Network Analytics (BNA) technology and machine learning (ML) algorithms. Background Currently, diagnosis of PD depends mainly on motor signs and symptoms. However, there is need for biomarkers that detect PD at an earlier stage to allow intervention and monitoring of potential disease-modifying therapies. Cognitive impairment may appear before motor symptoms, and it tends to worsen with disease progression. While ERPs obtained during cognitive tasks performance represent processing stages of cognitive brain functions, they have not yet been established as sensitive or specific markers for early-stage PD. Methods Nineteen PD patients (disease duration of ≤2 years) and 30 healthy controls (HC) underwent EEG recording while performing visual Go/No-Go and auditory Oddball cognitive tasks. ERPs were analyzed by the BNA technology, and a ML algorithm identified a combination of features that distinguish early PD from HC. We used a logistic regression classifier with a 10-fold cross-validation. Results The ML algorithm identified a neuromarker comprising 15 BNA features that discriminated early PD patients from HC. The area-under-the-curve of the receiver-operating characteristic curve was 0.79. Sensitivity and specificity were 0.74 and 0.73, respectively. The five most important features could be classified into three cognitive functions: early sensory processing (P50 amplitude, N100 latency), filtering of information (P200 amplitude and topographic similarity), and response-locked activity (P-200 topographic similarity preceding the motor response in the visual Go/No-Go task). Conclusions This pilot study found that BNA can identify patients with early PD using an advanced analysis of ERPs. These results need to be validated in a larger PD patient sample and assessed for people with premotor phase of PD.

Funder

Israel Innovation Authority of the Israeli Ministry of Economy

elminda ltd.

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference71 articles.

1. Biomarker modeling of alzheimer’s disease;CR Jack;Neuron,2013

2. CSF and blood biomarkers for Parkinson’s disease;L Parnetti;Lancet Neurol,2019

3. Update of the MDS research criteria for prodromal Parkinson’s disease;S Heinzel;Mov Disord,2019

4. Recent advances in biomarkers for Parkinson’s disease;R He;Front Aging Neurosci,2018

5. Parkinson disease;W Poewe;Nat Rev Dis Prim,2017

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3