Ensemble classifiers fed by functional connectivity during cognitive processing differentiate Parkinson’s disease even being under medication

Author:

Tülay Emine ElifORCID

Abstract

Abstract Brain–computer interface technologies, as a type of human-computer interaction, provide a control ability on machines and intelligent systems via human brain functions without needing physical contact. Moreover, it has a considerable contribution to the detection of cognitive state changes, which gives a clue for neurodegenerative diseases, including Parkinson’s disease (PD), in recent years. Although various studies implemented different machine learning models with several EEG features to detect PD and receive remarkable performances, there is a lack of knowledge on how brain connectivity during a cognitive task contributes to the differentiation of PD, even being under medication. To fill this gap, this study used three ensemble classifiers, which were fed by functional connectivity through cognitive response coherence (CRC) with varying selected features in different frequency bands upon application of the 3-Stimulation auditory oddball paradigm to differentiate PD medication ON and OFF and healthy controls (HC). The results revealed that the most remarkable performances were exhibited in slow frequency bands (delta and theta) in comparison to high frequency and wide range bands, especially in terms of target sounds. Moreover, in the delta band, target CRC distinguishes all groups from each other with accuracy rates of 80% for HC vs PD-OFF, 80% for HC vs PD-ON, and 81% for PD-ON vs PD-OFF. In the theta band, again target sounds were the most distinctive stimuli to classify HCxPD-OFF (80% accuracy), HCxPD-ON (80.5% accuracy) with quite good performances, and PD-ONxPD-OFF (76% accuracy) with acceptable performance. Besides, this study achieved a state-of-the-art performance with an accuracy of 87.5% in classifying PD-ONxPD-OFF via CRC of standard sounds in the delta band. Overall, the findings revealed that brain connectivity contributes to identifying PD and HC as well as the medication state of PD, especially in the slow frequency bands.

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3