Environmental drivers of dynamic soil erosion change in a Mediterranean fluvial landscape

Author:

Diodato Nazzareno,Fiorillo FrancescoORCID,Rinaldi Massimo,Bellocchi Gianni

Abstract

Background Rainfall and other climatic agents are the main triggers of soil erosion in the Mediterranean region, where they have the potential to increase discharge and sediment transport and cause long-term changes in the river system. For the Magra River Basin (MRB), located in the upper Tyrrhenian coast of Italy, we estimated changes in net erosion as a function of the geographical characteristics of the basin, the seasonal distribution of precipitation, and the vegetation cover. Methods and findings Based on rainfall erosivity and surface flow and transport sub-models, we developed a simplified model to assess basin-wide sediment yields on a monthly basis by upscaling the point rainfall input. Our calibration dataset of monthly data (Mg km-2 month-1, available for the years 1961 and 1963–1969) revealed that our model satisfactorily reproduces the net soil erosion in the study area (R2 = 0.81). For the period 1950–2020, the reconstruction of an annually aggregated time-series of monthly net erosion data (297 Mg km-2 yr-1 on average) indicated a moderate decline in sediment yield after 1999. This is part of a long-term downward trend, which highlights the role played by land-use changes and reforestation of the mountainous areas of the basin. Conclusion This study shows the environmental history and dynamics of the basin, and thus the varying sensitivity of hydrological processes and their perturbations. Relying on a few climatic variables as reported from a single representative basin location, it provides an interpretation of empirically determined factors that shape active erosional landscapes. In particular, we showed that the most recent extreme storms associated with sediment yield have been characterised by lower cumulative rainfall, indicating a greater propensity for the basin to produce sediment more discontinuously over time.

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3