Population balance modelling captures host cell protein dynamics in CHO cell cultures

Author:

Alhuthali SakhrORCID,Kontoravdi Cleo

Abstract

Monoclonal antibodies (mAbs) have been extensively studied for their wide therapeutic and research applications. Increases in mAb titre has been achieved mainly by cell culture media/feed improvement and cell line engineering to increase cell density and specific mAb productivity. However, this improvement has shifted the bottleneck to downstream purification steps. The higher accumulation of the main cell-derived impurities, host cell proteins (HCPs), in the supernatant can negatively affect product integrity and immunogenicity in addition to increasing the cost of capture and polishing steps. Mathematical modelling of bioprocess dynamics is a valuable tool to improve industrial production at fast rate and low cost. Herein, a single stage volume-based population balance model (PBM) has been built to capture Chinese hamster ovary (CHO) cell behaviour in fed-batch bioreactors. Using cell volume as the internal variable, the model captures the dynamics of mAb and HCP accumulation extracellularly under physiological and mild hypothermic culture conditions. Model-based analysis and orthogonal measurements of lactate dehydrogenase activity and double-stranded DNA concentration in the supernatant show that a significant proportion of HCPs found in the extracellular matrix is secreted by viable cells. The PBM then served as a platform for generating operating strategies that optimise antibody titre and increase cost-efficiency while minimising impurity levels.

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference131 articles.

1. Monoclonal antibodies: A review of therapeutic applications and future prospects;A Mahmuda;Tropical Journal of Pharmaceutical Research,2017

2. Biopharmaceutical benchmarks 2018;G. Walsh;Nature Biotechnology,2018

3. Proteomic Analysis of Host Cell Protein Dynamics in the Culture Supernatants of Antibody-Producing CHO Cells.;JH Park;Scientific Reports,2017

4. Optimizing amino acid composition of CHO cell culture media for a fusion protein production;ZZ Xing;Process Biochemistry,2011

5. Maximizing the Functional Lifetime of Protein A Resins;J Zhang;Biotechnology Progress,2017

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3