PEGDA microencapsulated allogeneic islets reverse canine diabetes without immunosuppression

Author:

Harrington Stephen,Karanu Francis,Ramachandran KarthikORCID,Williams S. Janette,Stehno-Bittel LisaORCID

Abstract

BackgroundProtection of islets without systemic immunosuppression has been a long-sought goal in the islet transplant field. We conducted a pilot biocompatibility/safety study in healthy dogs followed by a dose-finding efficacy study in diabetic dogs using polyethylene glycol diacrylate (PEGDA) microencapsulated allogeneic canine islets.MethodsPrior to the transplants, characterization of the canine islets included the calculations determining the average cell number/islet equivalent. Following measurements of purity, insulin secretion, and insulin, DNA and ATP content, the islets were encapsulated and transplanted interperitoneally into dogs via a catheter, which predominantly attached to the omentum. In the healthy dogs, half of the microspheres injected contained canine islets, the other half of the omentum received empty PEGDA microspheres.ResultsIn the biocompatibility study, healthy dogs received increasing doses of cells up to 1.7 M cells/kg body weight, yet no hypoglycemic events were recorded and the dogs presented with no adverse events. At necropsy the microspheres were identified and described as clear with attachment to the omentum. Several of the blood chemistry values that were abnormal prior to the transplants normalized after the transplant. The same observation was made for the diabetic dogs that received higher doses of canine islets. In all diabetic dogs, the insulin required to attempt to control blood glucose was cut by 50–100% after the transplant, down to no required insulin for the course of the 60-day study. The dogs had no adverse events and behavioral monitoring suggested normal activity after recovery from the transplant.Conclusions and implicationsThe study provides evidence that PEGDA microencapsulated canine islets reversed the signs of diabetes without immunosuppression and led to states of insulin-independence or significantly lowered insulin requirements in the recipients.

Funder

Likarda, LLC

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Pancreatic islet transplantation: current advances and challenges;Frontiers in Immunology;2024-06-03

2. Controlled-Release Hydrogel Microspheres to Deliver Multipotent Stem Cells for Treatment of Knee Osteoarthritis;Bioengineering;2023-11-15

3. The Future of Diabetes Therapies;Veterinary Clinics of North America: Small Animal Practice;2023-05

4. Bioengineered Vascularized Insulin Producing Endocrine Tissues;Pluripotent Stem Cell Therapy for Diabetes;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3