Abstract
Brassica juncea L. is a significant member of the Brassicaceae family, also known as Indian mustard. Water is a limiting factor in the successful production of this crop. Here, we tested the effect of water shortage in B. juncea plants supplemented with or without the application of silicon and arbuscular mycorrhizal fungi in total 8 different treatments compared under open filed conditions using a randomised complete block design (RCBD). The treatments under control conditions were control (C, T1); C+Silicon (Si, T2); C+My (Mycorrhiza; T3); and C+Si+My (T4). In contrast, treatments under stress conditions were S (Stress; T5); S+Si (T6); S+My (T7) and S+Si+My (T8), respectively. In total, we evaluated 16 traits, including plant response to stress by evaluating peroxidase (POD), superoxide dismutase (SOD), and catalase (CAT) activity. The fresh weight (g) increased only 7.47 percent with mycorrhiza (C+My) and 22.39 percent with silicon (C+Si) but increased 291.08 percent with both mycorrhiza and silicon (C+Si+My). Using mycorrhiza (S+My) or silicon (S+Si) alone produced a significant increase of 53.16 percent and 55.84 percent in fresh weight, respectively, while using both mycorrhiza and silicon (S+Si+My) together produced a dramatic increase of 380.71 percent under stress conditions. Superoxidase dismutase concentration (Ug−1 FW) was found to be increased by 29.48 percent, 6.71 percent, and 22.63 percent after applying C+My, C+Si and C+Si+My, but treatment under stress revealed some contrasting trends, with an increase of 11.21 percent and 19.77 percent for S+My, S+Si+My, but a decrease of 13.15 percent for S+Si. Finally, in the presence of stress, carotenoid content (mg/g FW) increased by 58.06 percent, 54.83 percent, 183.87 percent with C+My, and 23.81 percent with S+My and S+Si+My, but decreased by 22.22 percent with S+Si. Silicon application proved to be more effective than AMF treatment with Rhizophagus irregularis, and the best results were obtained with the combination of Si and AMF. This work will help to suggest the measures to overcome the water stress in B. juncea.
Publisher
Public Library of Science (PLoS)
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献